BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35057923)

  • 1. Using bimetallic Au/Cu nanoplatelets for construction of facile and label-free inner filter effect-based photoluminescence sensing platform for sarcosine detection.
    Lin X; Tian M; Cao C; Shu T; Wen Y; Su L; Zhang X
    Anal Chim Acta; 2022 Feb; 1192():339331. PubMed ID: 35057923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Rapid Method for the Detection of Sarcosine Using SPIONs/Au/CS/SOX/NPs for Prostate Cancer Sensing.
    Uhlirova D; Stankova M; Docekalova M; Hosnedlova B; Kepinska M; Ruttkay-Nedecky B; Ruzicka J; Fernandez C; Milnerowicz H; Kizek R
    Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30467297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic polymer dot-based fluorometric determination of the activity of horseradish peroxidase and of the concentrations of glucose and the insecticidal protein toxin Cry1Ab/Ac.
    Cheng X; Sun L; Li R; Huang Y; Xu H; Wang Z; Li ZL; Jiang H; Ma J
    Mikrochim Acta; 2019 Oct; 186(11):731. PubMed ID: 31659455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly branched gold-copper nanostructures for non-enzymatic specific detection of glucose and hydrogen peroxide.
    Ngamaroonchote A; Sanguansap Y; Wutikhun T; Karn-Orachai K
    Mikrochim Acta; 2020 Sep; 187(10):559. PubMed ID: 32915302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence sensing platform for sarcosine analysis based on nitrogen-doping copper nanosheets and gold nanoclusters.
    Wang M; Zhang L; Zhou X; Zhang J; Zhou C; Su X
    Anal Chim Acta; 2022 Aug; 1223():340188. PubMed ID: 35999000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-mode fluorescence and colorimetric smartphone-based sensing platform with oxidation-induced self-assembled nanoflowers for sarcosine detection.
    Liu P; Sun Q; Gai Z; Yang F; Yang Y
    Anal Chim Acta; 2024 Jun; 1306():342586. PubMed ID: 38692787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strongly phosphorescent and water-soluble gold(I)-silver(I)-cysteine nanoplatelets via versatile small biomolecule cysteine-assisted synthesis for intracellular hypochlorite detection.
    Lin X; Tian M; Cao C; Shu T; Wang J; Wen Y; Su L; Zhang X
    Biosens Bioelectron; 2021 Dec; 193():113571. PubMed ID: 34425519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A nature-inspired colorimetric and fluorescent dual-modal biosensor for exosomes detection.
    Xia Y; Chen T; Chen G; Weng Y; Zeng L; Liao Y; Chen W; Lan J; Zhang J; Chen J
    Talanta; 2020 Jul; 214():120851. PubMed ID: 32278412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Ti
    Ran B; Chen C; Liu B; Lan M; Chen H; Zhu Y
    Electrophoresis; 2022 Oct; 43(20):2033-2043. PubMed ID: 35856660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colorimetric paper-based sarcosine assay with improved sensitivity.
    Masumoto M; Ohta S; Nakagawa M; Hiruta Y; Citterio D
    Anal Bioanal Chem; 2022 Jan; 414(1):691-701. PubMed ID: 34657964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photothermal biosensing integrated with microfluidic paper-based analytical device for sensitive quantification of sarcosine.
    Khachornsakkul K; Leelasattarathkul T
    Talanta; 2024 May; 271():125628. PubMed ID: 38219320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new method for cartap detection with high sensitivity and selectivity based on the inner filter effect between GSH-Cu NCs and Au NPs.
    Liu H; Dong L; Wang M; Huang G
    Anal Methods; 2021 Jun; 13(24):2659-2664. PubMed ID: 34037634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sarcosine oxidase composite screen-printed electrode for sarcosine determination in biological samples.
    Rebelo TS; Pereira CM; Sales MG; Noronha JP; Costa-Rodrigues J; Silva F; Fernandes MH
    Anal Chim Acta; 2014 Nov; 850():26-32. PubMed ID: 25441156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrabright silicon nanoparticle fluorescence probe for sensitive detection of cholesterol in human serum.
    Ye X; Jiang Y; Mu X; Sun Y; Ma P; Ren P; Song D
    Anal Bioanal Chem; 2022 May; 414(13):3827-3836. PubMed ID: 35347354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cu
    Zhan Y; Zeng Y; Li L; Guo L; Luo F; Qiu B; Huang Y; Lin Z
    Anal Chem; 2020 Jan; 92(1):1236-1244. PubMed ID: 31779312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dopamine-Modified AuCu Bimetallic Nanoclusters as Charge Transfer-Based Biosensors for Highly Sensitive Glycine Detection.
    Chen Z; Ding W; Gu Y; Gao S; Yun D; Wang C; Li W; Sun F
    Langmuir; 2020 Nov; 36(46):13928-13936. PubMed ID: 33174751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction and application of amperometric sarcosine biosensor based on SOxNPs/AuE for determination of prostate cancer.
    Kumar P; Narwal V; Jaiwal R; Pundir CS
    Biosens Bioelectron; 2018 Dec; 122():140-146. PubMed ID: 30248641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bimetallic AuCu nanoclusters-based florescent chemosensor for sensitive detection of Fe
    Shojaeifard Z; Heidari N; Hemmateenejad B
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Feb; 209():202-208. PubMed ID: 30390506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a novel microfluidic biosensing platform integrating micropillar array electrode and acoustic microstreaming techniques.
    Chen C; Ran B; Liu B; Liu X; Liu Y; Lan M; Manasseh R; Zhu Y
    Biosens Bioelectron; 2023 Mar; 223():114703. PubMed ID: 36563526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colorimetric determination of sarcosine in urine samples of prostatic carcinoma by mimic enzyme palladium nanoparticles.
    Lan J; Xu W; Wan Q; Zhang X; Lin J; Chen J; Chen J
    Anal Chim Acta; 2014 May; 825():63-8. PubMed ID: 24767152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.