These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35058109)

  • 21. An Adaptive Rate Blocked Compressive Sensing Method for Video.
    Wang J; Chen J
    Entropy (Basel); 2021 Jul; 23(8):. PubMed ID: 34441142
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low-Cost Image Compressive Sensing with Multiple Measurement Rates for Object Detection.
    Liao L; Li K; Yang C; Liu J
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31060279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A rate adaptive control method for Improving the imaging speed of atomic force microscopy.
    Wang Y; Wan J; Hu X; Xu L; Wu S; Hu X
    Ultramicroscopy; 2015 Aug; 155():49-54. PubMed ID: 25942751
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control Issues in High-speed AFM for Biological Applications: Collagen Imaging Example.
    Zou Q; Leang K; Sadoun E; Reed M; Devasia S
    Asian J Control; 2004 Jun; 6(2):164-178. PubMed ID: 16467927
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Speeding up the Topography Imaging of Atomic Force Microscopy by Convolutional Neural Network.
    Zheng P; He H; Gao Y; Tang P; Wang H; Peng J; Wang L; Su C; Ding S
    Anal Chem; 2022 Mar; 94(12):5041-5047. PubMed ID: 35294191
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual Optical Path Based Adaptive Compressive Sensing Imaging System.
    Li H; Lu K; Xue J; Dai F; Zhang Y
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577406
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reconstruction of a scanned topographic image distorted by the creep effect of a Z scanner in atomic force microscopy.
    Han C; Chung CC
    Rev Sci Instrum; 2011 May; 82(5):053709. PubMed ID: 21639509
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Atomic Force Microscopy (AFM) Analysis of an Object Larger and Sharper than the AFM Tip.
    Chen Z; Luo J; Doudevski I; Erten S; Kim SH
    Microsc Microanal; 2019 Oct; 25(5):1106-1111. PubMed ID: 31307569
    [TBL] [Abstract][Full Text] [Related]  

  • 29. AutoBCS: Block-Based Image Compressive Sensing With Data-Driven Acquisition and Noniterative Reconstruction.
    Gan H; Gao Y; Liu C; Chen H; Zhang T; Liu F
    IEEE Trans Cybern; 2023 Apr; 53(4):2558-2571. PubMed ID: 34851846
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dual-Channel Reconstruction Network for Image Compressive Sensing.
    Zhang Z; Gao D; Xie X; Shi G
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31167471
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of sparse sampling schemes on image quality in low-dose CT.
    Abbas S; Lee T; Shin S; Lee R; Cho S
    Med Phys; 2013 Nov; 40(11):111915. PubMed ID: 24320448
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advanced Hybrid Positioning System of SEM and AFM for 2D Material Surface Metrology.
    Kim T; Kim D; Kim T; Kim H; Shin C
    Microsc Microanal; 2022 Jun; ():1-7. PubMed ID: 35676867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of sampling patterns for high-resolution compressed sensing MRI of porous materials: 'learning' from X-ray microcomputed tomography data.
    Karlsons K; DE Kort DW; Sederman AJ; Mantle MD; DE Jong H; Appel M; Gladden LF
    J Microsc; 2019 Nov; 276(2):63-81. PubMed ID: 31587277
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low-Complexity Rate-Distortion Optimization of Sampling Rate and Bit-Depth for Compressed Sensing of Images.
    Chen Q; Chen D; Gong J; Ruan J
    Entropy (Basel); 2020 Jan; 22(1):. PubMed ID: 33285900
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sparse-view computed laminography with a spherical sinusoidal scan for nondestructive testing.
    Abbas S; Park M; Min J; Kim HK; Cho S
    Opt Express; 2014 Jul; 22(15):17745-55. PubMed ID: 25089394
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Image Super-Resolution Through Compressive Sensing-based Recovery.
    Zanddizari H; Dey A; Rajan S
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4006-4010. PubMed ID: 34892109
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Prediction-Based Spatial-Spectral Adaptive Hyperspectral Compressive Sensing Algorithm.
    Xu P; Chen B; Xue L; Zhang J; Zhu L
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30274352
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient image reconstruction of high-density molecules with augmented Lagrangian method in super-resolution microscopy.
    Li J; Chen D; Qu J
    Opt Express; 2018 Sep; 26(19):24329-24342. PubMed ID: 30469554
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving accuracy of sample surface topography by atomic force microscopy.
    Xu M; Fujita D; Onishi K; Miyazawa K
    J Nanosci Nanotechnol; 2009 Oct; 9(10):6003-7. PubMed ID: 19908487
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Radial Undersampling-Based Interpolation Scheme for Multislice CSMRI Reconstruction Techniques.
    Murad M; Jalil A; Bilal M; Ikram S; Ali A; Khan B; Mehmood K
    Biomed Res Int; 2021; 2021():6638588. PubMed ID: 33954189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.