BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 35058203)

  • 1. Enabling high throughput drug discovery in 3D cell cultures through a novel bioprinting workflow.
    Engel M; Belfiore L; Aghaei B; Sutija M
    SLAS Technol; 2022 Feb; 27(1):32-38. PubMed ID: 35058203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishment of 2D Cell Cultures Derived From 3D MCF-7 Spheroids Displaying a Doxorubicin Resistant Profile.
    Nunes AS; Costa EC; Barros AS; de Melo-Diogo D; Correia IJ
    Biotechnol J; 2019 Apr; 14(4):e1800268. PubMed ID: 30242980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Hydrogel Cultures for High-Throughput Drug Discovery.
    Sperle K; Pochan DJ; Langhans SA
    Methods Mol Biol; 2023; 2614():369-381. PubMed ID: 36587136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytotoxic and molecular differences of anticancer agents on 2D and 3D cell culture.
    Alwahsh M; Al-Doridee A; Jasim S; Awwad O; Hergenröder R; Hamadneh L
    Mol Biol Rep; 2024 Jun; 51(1):721. PubMed ID: 38829450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D bioprinted drug-resistant breast cancer spheroids for quantitative in situ evaluation of drug resistance.
    Hong S; Song JM
    Acta Biomater; 2022 Jan; 138():228-239. PubMed ID: 34718182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in microarray 3D bioprinting for high-throughput spheroid and tissue culture and analysis.
    Shrestha S; Lekkala VKR; Acharya P; Siddhpura D; Lee MY
    Essays Biochem; 2021 Aug; 65(3):481-489. PubMed ID: 34296737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D modeling of normal skin and cutaneous squamous cell carcinoma. A comparative study in 2D cultures, spheroids, and 3D bioprinted systems.
    Kurzyk A; Szumera-Ciećkiewicz A; Miłoszewska J; Chechlińska M
    Biofabrication; 2024 Feb; 16(2):. PubMed ID: 38377605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D cell cultures toward quantitative high-throughput drug screening.
    Wang Y; Jeon H
    Trends Pharmacol Sci; 2022 Jul; 43(7):569-581. PubMed ID: 35504760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioprinting of 3D breast epithelial spheroids for human cancer models.
    Swaminathan S; Hamid Q; Sun W; Clyne AM
    Biofabrication; 2019 Jan; 11(2):025003. PubMed ID: 30616234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Variety of 3D Breast Cancer Models for the Study of Tumor Physiology and Drug Screening.
    Fröhlich E
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioprinting-based automated deposition of single cancer cell spheroids into oxygen sensor microelectrode wells.
    Dornhof J; Zieger V; Kieninger J; Frejek D; Zengerle R; Urban GA; Kartmann S; Weltin A
    Lab Chip; 2022 Nov; 22(22):4369-4381. PubMed ID: 36254669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3-Dimensional culture systems for anti-cancer compound profiling and high-throughput screening reveal increases in EGFR inhibitor-mediated cytotoxicity compared to monolayer culture systems.
    Howes AL; Richardson RD; Finlay D; Vuori K
    PLoS One; 2014; 9(9):e108283. PubMed ID: 25247711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D breast cancer microtissue reveals the role of tumor microenvironment on the transport and efficacy of free-doxorubicin in vitro.
    Brancato V; Gioiella F; Imparato G; Guarnieri D; Urciuolo F; Netti PA
    Acta Biomater; 2018 Jul; 75():200-212. PubMed ID: 29864516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioprintable Alginate/Gelatin Hydrogel 3D In Vitro Model Systems Induce Cell Spheroid Formation.
    Jiang T; Munguia-Lopez J; Flores-Torres S; Grant J; Vijayakumar S; De Leon-Rodriguez A; Kinsella JM
    J Vis Exp; 2018 Jul; (137):. PubMed ID: 30010644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Covalently Crosslinked Ink for Multimaterials Drop-on-Demand 3D Bioprinting of 3D Cell Cultures.
    Utama RH; Tan VTG; Tjandra KC; Sexton A; Nguyen DHT; O'Mahony AP; Du EY; Tian P; Ribeiro JCC; Kavallaris M; Gooding JJ
    Macromol Biosci; 2021 Sep; 21(9):e2100125. PubMed ID: 34173320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing scaffold-free spheroid models: 3D cell bioprinting method for metastatic HSC3-Oral squamous carcinoma cell line.
    de Araújo TBS; Nogueira RLR; Siquara da Rocha LO; Bastos IN; Dias RB; Souza BSF; Lambert DW; Coletta RD; Silva VAO; Gurgel Rocha CA
    SLAS Discov; 2024 Jun; 29(4):100158. PubMed ID: 38852983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementation of a High-Throughput Pilot Screen in Peptide Hydrogel-Based Three-Dimensional Cell Cultures.
    Worthington P; Drake KM; Li Z; Napper AD; Pochan DJ; Langhans SA
    SLAS Discov; 2019 Aug; 24(7):714-723. PubMed ID: 31039326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a magnetic 3D spheroid platform with potential application for high-throughput drug screening.
    Guo WM; Loh XJ; Tan EY; Loo JS; Ho VH
    Mol Pharm; 2014 Jul; 11(7):2182-9. PubMed ID: 24842574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High throughput direct 3D bioprinting in multiwell plates.
    Hwang HH; You S; Ma X; Kwe L; Victorine G; Lawrence N; Wan X; Shen H; Zhu W; Chen S
    Biofabrication; 2021 Mar; 13(2):. PubMed ID: 32299077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous 2D and 3D cell culture array for multicellular geometry, drug discovery and tumor microenvironment reconstruction.
    Li S; Yang K; Chen X; Zhu X; Zhou H; Li P; Chen Y; Jiang Y; Li T; Qin X; Yang H; Wu C; Ji B; You F; Liu Y
    Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34407511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.