BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 35058356)

  • 21. Structure of the active subunit of the yeast exosome core, Rrp44: diverse modes of substrate recruitment in the RNase II nuclease family.
    Lorentzen E; Basquin J; Tomecki R; Dziembowski A; Conti E
    Mol Cell; 2008 Mar; 29(6):717-28. PubMed ID: 18374646
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structure of the highly divergent pseudouridine synthase TruD reveals a circular permutation of a conserved fold.
    Hoang C; Ferre-D'Amare AR
    RNA; 2004 Jul; 10(7):1026-33. PubMed ID: 15208439
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural insight into the functional mechanism of Nep1/Emg1 N1-specific pseudouridine methyltransferase in ribosome biogenesis.
    Thomas SR; Keller CA; Szyk A; Cannon JR; Laronde-Leblanc NA
    Nucleic Acids Res; 2011 Mar; 39(6):2445-57. PubMed ID: 21087996
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Research progress of RNA pseudouridine modification in nervous system.
    Chen H; Zhao S
    Int J Neurosci; 2024 Feb; ():1-11. PubMed ID: 38407188
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural studies of the yeast DNA damage-inducible protein Ddi1 reveal domain architecture of this eukaryotic protein family.
    Trempe JF; Šašková KG; Sivá M; Ratcliffe CD; Veverka V; Hoegl A; Ménade M; Feng X; Shenker S; Svoboda M; Kožíšek M; Konvalinka J; Gehring K
    Sci Rep; 2016 Sep; 6():33671. PubMed ID: 27646017
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Domain organization and crystal structure of the catalytic domain of E.coli RluF, a pseudouridine synthase that acts on 23S rRNA.
    Sunita S; Zhenxing H; Swaathi J; Cygler M; Matte A; Sivaraman J
    J Mol Biol; 2006 Jun; 359(4):998-1009. PubMed ID: 16712869
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biochemical insight into pseudouridine synthase 7 (PUS7) as a novel interactor of sirtuin, SIRT1.
    Dalal S; Deshmukh P; Unni S; Padavattan S; Padmanabhan B
    Biochem Biophys Res Commun; 2019 Oct; 518(3):598-604. PubMed ID: 31451225
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The structure of transcription termination factor Nrd1 reveals an original mode for GUAA recognition.
    Franco-Echevarría E; González-Polo N; Zorrilla S; Martínez-Lumbreras S; Santiveri CM; Campos-Olivas R; Sánchez M; Calvo O; González B; Pérez-Cañadillas JM
    Nucleic Acids Res; 2017 Sep; 45(17):10293-10305. PubMed ID: 28973465
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Eukaryotic stand-alone pseudouridine synthases - RNA modifying enzymes and emerging regulators of gene expression?
    Rintala-Dempsey AC; Kothe U
    RNA Biol; 2017 Sep; 14(9):1185-1196. PubMed ID: 28045575
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanistic features of the atypical tRNA m1G9 SPOUT methyltransferase, Trm10.
    Krishnamohan A; Jackman JE
    Nucleic Acids Res; 2017 Sep; 45(15):9019-9029. PubMed ID: 28911116
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A previously unidentified activity of yeast and mouse RNA:pseudouridine synthases 1 (Pus1p) on tRNAs.
    Behm-Ansmant I; Massenet S; Immel F; Patton JR; Motorin Y; Branlant C
    RNA; 2006 Aug; 12(8):1583-93. PubMed ID: 16804160
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A dual-specificity pseudouridine synthase: an Escherichia coli synthase purified and cloned on the basis of its specificity for psi 746 in 23S RNA is also specific for psi 32 in tRNA(phe).
    Wrzesinski J; Nurse K; Bakin A; Lane BG; Ofengand J
    RNA; 1995 Jun; 1(4):437-48. PubMed ID: 7493321
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Psi35 in the branch site recognition region of U2 small nuclear RNA is important for pre-mRNA splicing in Saccharomyces cerevisiae.
    Yang C; McPheeters DS; Yu YT
    J Biol Chem; 2005 Feb; 280(8):6655-62. PubMed ID: 15611063
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reconstitution and structural analysis of the yeast box H/ACA RNA-guided pseudouridine synthase.
    Li S; Duan J; Li D; Yang B; Dong M; Ye K
    Genes Dev; 2011 Nov; 25(22):2409-21. PubMed ID: 22085967
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The structural basis for tRNA recognition and pseudouridine formation by pseudouridine synthase I.
    Foster PG; Huang L; Santi DV; Stroud RM
    Nat Struct Biol; 2000 Jan; 7(1):23-7. PubMed ID: 10625422
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An intrinsically disordered C terminus allows the La protein to assist the biogenesis of diverse noncoding RNA precursors.
    Kucera NJ; Hodsdon ME; Wolin SL
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1308-13. PubMed ID: 21212361
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The yeast gene YNL292w encodes a pseudouridine synthase (Pus4) catalyzing the formation of psi55 in both mitochondrial and cytoplasmic tRNAs.
    Becker HF; Motorin Y; Planta RJ; Grosjean H
    Nucleic Acids Res; 1997 Nov; 25(22):4493-9. PubMed ID: 9358157
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pseudouridine site assignment by high-throughput in vitro RNA pseudouridylation and sequencing.
    Martinez NM; Schaening-Burgos C; Gilbert WV
    Methods Enzymol; 2021; 658():277-310. PubMed ID: 34517951
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pseudouridine-mediated translation control of mRNA by methionine aminoacyl tRNA synthetase.
    Levi O; Arava YS
    Nucleic Acids Res; 2021 Jan; 49(1):432-443. PubMed ID: 33305314
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activities of human RRP6 and structure of the human RRP6 catalytic domain.
    Januszyk K; Liu Q; Lima CD
    RNA; 2011 Aug; 17(8):1566-77. PubMed ID: 21705430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.