These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 35058370)

  • 21. Song practice promotes acute vocal variability at a key stage of sensorimotor learning.
    Miller JE; Hilliard AT; White SA
    PLoS One; 2010 Jan; 5(1):e8592. PubMed ID: 20066039
    [TBL] [Abstract][Full Text] [Related]  

  • 22. miR-9 regulates basal ganglia-dependent developmental vocal learning and adult vocal performance in songbirds.
    Shi Z; Piccus Z; Zhang X; Yang H; Jarrell H; Ding Y; Teng Z; Tchernichovski O; Li X
    Elife; 2018 Jan; 7():. PubMed ID: 29345619
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Discrete Circuits Support Generalized versus Context-Specific Vocal Learning in the Songbird.
    Tian LY; Brainard MS
    Neuron; 2017 Dec; 96(5):1168-1177.e5. PubMed ID: 29154128
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Connections of a motor cortical region in zebra finches: relation to pathways for vocal learning.
    Bottjer SW; Brady JD; Cribbs B
    J Comp Neurol; 2000 May; 420(2):244-60. PubMed ID: 10753310
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Disconnection of a basal ganglia circuit in juvenile songbirds attenuates the spectral differentiation of song syllables.
    Elliott KC; Wu W; Bertram R; Johnson F
    Dev Neurobiol; 2014 Jun; 74(6):574-90. PubMed ID: 24218118
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vocal experimentation in the juvenile songbird requires a basal ganglia circuit.
    Olveczky BP; Andalman AS; Fee MS
    PLoS Biol; 2005 May; 3(5):e153. PubMed ID: 15826219
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Naturalistic stimulation drives opposing heterosynaptic plasticity at two inputs to songbird cortex.
    Mehaffey WH; Doupe AJ
    Nat Neurosci; 2015 Sep; 18(9):1272-80. PubMed ID: 26237364
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Independent premotor encoding of the sequence and structure of birdsong in avian cortex.
    Basista MJ; Elliott KC; Wu W; Hyson RL; Bertram R; Johnson F
    J Neurosci; 2014 Dec; 34(50):16821-34. PubMed ID: 25505334
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discrete Evaluative and Premotor Circuits Enable Vocal Learning in Songbirds.
    Kearney MG; Warren TL; Hisey E; Qi J; Mooney R
    Neuron; 2019 Nov; 104(3):559-575.e6. PubMed ID: 31447169
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contributions of an avian basal ganglia-forebrain circuit to real-time modulation of song.
    Kao MH; Doupe AJ; Brainard MS
    Nature; 2005 Feb; 433(7026):638-43. PubMed ID: 15703748
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A subcortical circuit linking the cerebellum to the basal ganglia engaged in vocal learning.
    Pidoux L; Le Blanc P; Levenes C; Leblois A
    Elife; 2018 Jul; 7():. PubMed ID: 30044222
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human mutant huntingtin disrupts vocal learning in transgenic songbirds.
    Liu WC; Kohn J; Szwed SK; Pariser E; Sepe S; Haripal B; Oshimori N; Marsala M; Miyanohara A; Lee R
    Nat Neurosci; 2015 Nov; 18(11):1617-22. PubMed ID: 26436900
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of topography within song control circuitry of zebra finches during the sensitive period for song learning.
    Iyengar S; Viswanathan SS; Bottjer SW
    J Neurosci; 1999 Jul; 19(14):6037-57. PubMed ID: 10407041
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bidirectional scaling of vocal variability by an avian cortico-basal ganglia circuit.
    Heston JB; Simon J; Day NF; Coleman MJ; White SA
    Physiol Rep; 2018 Apr; 6(8):e13638. PubMed ID: 29687960
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A cortical motor nucleus drives the basal ganglia-recipient thalamus in singing birds.
    Goldberg JH; Fee MS
    Nat Neurosci; 2012 Feb; 15(4):620-7. PubMed ID: 22327474
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inter- and intra-specific differences in muscarinic acetylcholine receptor expression in the neural pathways for vocal learning in songbirds.
    Asogwa NC; Mori C; Sánchez-Valpuesta M; Hayase S; Wada K
    J Comp Neurol; 2018 Dec; 526(17):2856-2869. PubMed ID: 30198559
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Developmental modulation and predictability of age-dependent vocal plasticity in adult zebra finches.
    James LS; Sakata JT
    Brain Res; 2019 Oct; 1721():146336. PubMed ID: 31310739
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rules and mechanisms for efficient two-stage learning in neural circuits.
    Teşileanu T; Ölveczky B; Balasubramanian V
    Elife; 2017 Apr; 6():. PubMed ID: 28374674
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A hypothesis for basal ganglia-dependent reinforcement learning in the songbird.
    Fee MS; Goldberg JH
    Neuroscience; 2011 Dec; 198():152-70. PubMed ID: 22015923
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dual pre-motor contribution to songbird syllable variation.
    Thompson JA; Basista MJ; Wu W; Bertram R; Johnson F
    J Neurosci; 2011 Jan; 31(1):322-30. PubMed ID: 21209218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.