These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 35058608)
61. Re-engineering of carbon fixation in plants - challenges for plant biotechnology to improve yields in a high-CO2 world. Peterhansel C; Offermann S Curr Opin Biotechnol; 2012 Apr; 23(2):204-8. PubMed ID: 22261558 [TBL] [Abstract][Full Text] [Related]
62. Restoration of photosystem II photochemistry and carbon assimilation and related changes in chlorophyll and protein contents during the rehydration of desiccated Xerophyta scabrida leaves. Pérez P; Rabnecz G; Laufer Z; Gutiérrez D; Tuba Z; Martínez-Carrasco R J Exp Bot; 2011 Jan; 62(3):895-905. PubMed ID: 20956360 [TBL] [Abstract][Full Text] [Related]
63. Dynamic light caused less photosynthetic suppression, rather than more, under nitrogen deficit conditions than under sufficient nitrogen supply conditions in soybean. Li YT; Li Y; Li YN; Liang Y; Sun Q; Li G; Liu P; Zhang ZS; Gao HY BMC Plant Biol; 2020 Jul; 20(1):339. PubMed ID: 32680459 [TBL] [Abstract][Full Text] [Related]
64. Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy. Yin X; Struik PC; Romero P; Harbinson J; Evers JB; VAN DER Putten PE; Vos J Plant Cell Environ; 2009 May; 32(5):448-64. PubMed ID: 19183300 [TBL] [Abstract][Full Text] [Related]
65. Enhancing Photosynthesis and Plant Productivity through Genetic Modification. Nazari M; Kordrostami M; Ghasemi-Soloklui AA; Eaton-Rye JJ; Pashkovskiy P; Kuznetsov V; Allakhverdiev SI Cells; 2024 Aug; 13(16):. PubMed ID: 39195209 [TBL] [Abstract][Full Text] [Related]
66. Photorespiration in the context of Rubisco biochemistry, CO Busch FA Plant J; 2020 Feb; 101(4):919-939. PubMed ID: 31910295 [TBL] [Abstract][Full Text] [Related]
67. An optimization model of the photosynthetic leaf: the model of optimal photosynthetic CO2 fixation within leaves of mesophytic C3 plants. Soukhovolsky VG; Fomina IR; Bil K; Nishio JN; Khlebopros RG Dokl Biol Sci; 2002; 382():28-30. PubMed ID: 11998751 [No Abstract] [Full Text] [Related]
68. Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. III: fitting of experimental data by a simple model. André MJ Biosystems; 2013 Aug; 113(2):104-14. PubMed ID: 23153764 [TBL] [Abstract][Full Text] [Related]
70. Evolving Methanococcoides burtonii archaeal Rubisco for improved photosynthesis and plant growth. Wilson RH; Alonso H; Whitney SM Sci Rep; 2016 Mar; 6():22284. PubMed ID: 26926260 [TBL] [Abstract][Full Text] [Related]
71. Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Crafts-Brandner SJ; Salvucci ME Plant Physiol; 2002 Aug; 129(4):1773-80. PubMed ID: 12177490 [TBL] [Abstract][Full Text] [Related]
72. Photosynthesis and growth of tobacco with a substituted bacterial Rubisco mirror the properties of the introduced enzyme. Whitney SM; Andrews TJ Plant Physiol; 2003 Sep; 133(1):287-94. PubMed ID: 12970494 [TBL] [Abstract][Full Text] [Related]
73. Photosynthetic responses to variable light: a comparison of species from contrasting habitats. Ögren E; Sundin U Oecologia; 1996 Apr; 106(1):18-27. PubMed ID: 28307153 [TBL] [Abstract][Full Text] [Related]
74. A small dynamic leaf-level model predicting photosynthesis in greenhouse tomatoes. Joubert D; Zhang N; Berman SR; Kaiser E; Molenaar J; Stigter JD PLoS One; 2023; 18(3):e0275047. PubMed ID: 36927993 [TBL] [Abstract][Full Text] [Related]
75. Sunflecks in the upper canopy: dynamics of light-use efficiency in sun and shade leaves of Fagus sylvatica. Durand M; Stangl ZR; Salmon Y; Burgess AJ; Murchie EH; Robson TM New Phytol; 2022 Aug; 235(4):1365-1378. PubMed ID: 35569099 [TBL] [Abstract][Full Text] [Related]
76. The phenology of leaf quality and its within-canopy variation is essential for accurate modeling of photosynthesis in tropical evergreen forests. Wu J; Serbin SP; Xu X; Albert LP; Chen M; Meng R; Saleska SR; Rogers A Glob Chang Biol; 2017 Nov; 23(11):4814-4827. PubMed ID: 28418158 [TBL] [Abstract][Full Text] [Related]
77. Photosynthesis, plant growth and N allocation in transgenic rice plants with decreased Rubisco under CO2 enrichment. Makino A; Nakano H; Mae T; Shimada T; Yamamoto N J Exp Bot; 2000 Feb; 51 Spec No():383-9. PubMed ID: 10938846 [TBL] [Abstract][Full Text] [Related]
78. Reductions of Rubisco activase by antisense RNA in the C4 plant Flaveria bidentis reduces Rubisco carbamylation and leaf photosynthesis. von Caemmerer S; Hendrickson L; Quinn V; Vella N; Millgate AG; Furbank RT Plant Physiol; 2005 Feb; 137(2):747-55. PubMed ID: 15665240 [TBL] [Abstract][Full Text] [Related]
79. Photosynthetic limitations in two Antarctic vascular plants: importance of leaf anatomical traits and Rubisco kinetic parameters. Sáez PL; Bravo LA; Cavieres LA; Vallejos V; Sanhueza C; Font-Carrascosa M; Gil-Pelegrín E; Javier Peguero-Pina J; Galmés J J Exp Bot; 2017 May; 68(11):2871-2883. PubMed ID: 28830100 [TBL] [Abstract][Full Text] [Related]
80. Acclimation of C4 metabolism to low light in mature maize leaves could limit energetic losses during progressive shading in a crop canopy. Bellasio C; Griffiths H J Exp Bot; 2014 Jul; 65(13):3725-36. PubMed ID: 24591058 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]