BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35058807)

  • 1. Antioxidant Responses in Copepods Are Driven Primarily by Food Intake, Not by Toxin-Producing Cyanobacteria in the Diet.
    Gorokhova E; El-Shehawy R
    Front Physiol; 2021; 12():805646. PubMed ID: 35058807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bloom-forming cyanobacteria support copepod reproduction and development in the Baltic Sea.
    Hogfors H; Motwani NH; Hajdu S; El-Shehawy R; Holmborn T; Vehmaa A; Engström-Öst J; Brutemark A; Gorokhova E
    PLoS One; 2014; 9(11):e112692. PubMed ID: 25409500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How Copepods Can Eat Toxins Without Getting Sick: Gut Bacteria Help Zooplankton to Feed in Cyanobacteria Blooms.
    Gorokhova E; El-Shehawy R; Lehtiniemi M; Garbaras A
    Front Microbiol; 2020; 11():589816. PubMed ID: 33510717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sedimentation of Nodularia spumigena and distribution of nodularin in the food web during transport of a cyanobacterial bloom from the Baltic Sea to the Kattegat.
    Carlsson P; Rita D
    Harmful Algae; 2019 Jun; 86():74-83. PubMed ID: 31358279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecosystem consequences of cyanobacteria in the northern Baltic Sea.
    Karjalainen M; Engström-Ost J; Korpinen S; Peltonen H; Pääkkönen JP; Rönkkönen S; Suikkanen S; Viitasalo M
    Ambio; 2007 Apr; 36(2-3):195-202. PubMed ID: 17520934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesozooplankton grazing on picocyanobacteria in the Baltic Sea as inferred from molecular diet analysis.
    Motwani NH; Gorokhova E
    PLoS One; 2013; 8(11):e79230. PubMed ID: 24260175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake and accumulation of dissolved, radiolabeled nodularin in Baltic Sea zooplankton.
    Karjalainen M; Reinikainen M; Lindvall F; Spoof L; Meriluoto JA
    Environ Toxicol; 2003 Feb; 18(1):52-60. PubMed ID: 12539144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulation of nodularin-like compounds from the cyanobacterium Nodularia spumigena and changes in acetylcholinesterase activity in the clam Macoma balthica during short-term laboratory exposure.
    Lehtonen KK; Kankaanpää H; Leiniö S; Sipiä VO; Pflugmacher S; Sandberg-Kilpi E
    Aquat Toxicol; 2003 Sep; 64(4):461-76. PubMed ID: 12878416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single and combined effects of hypoxia and contaminated sediments on the amphipod Monoporeia affinis in laboratory toxicity bioassays based on multiple biomarkers.
    Gorokhova E; Löf M; Halldórsson HP; Tjärnlund U; Lindström M; Elfwing T; Sundelin B
    Aquat Toxicol; 2010 Aug; 99(2):263-74. PubMed ID: 20617547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cumulative effects of exposure to cyanobacteria bloom extracts and benzo[a]pyrene on antioxidant defence biomarkers in Gammarus oceanicus (Crustacea: Amphipoda).
    Turja R; Guimarães L; Nevala A; Kankaanpää H; Korpinen S; Lehtonen KK
    Toxicon; 2014 Feb; 78():68-77. PubMed ID: 24316267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interspecific Interactions Drive Nonribosomal Peptide Production in Nodularia spumigena.
    Lage S; Mazur-Marzec H; Gorokhova E
    Appl Environ Microbiol; 2022 Aug; 88(15):e0096622. PubMed ID: 35862669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence of the hepatotoxic cyanobacterium Nodularia spumigena in the Baltic Sea and structure of the toxin.
    Sivonen K; Kononen K; Carmichael WW; Dahlem AM; Rinehart KL; Kiviranta J; Niemela SI
    Appl Environ Microbiol; 1989 Aug; 55(8):1990-5. PubMed ID: 2506812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Projected marine climate change: effects on copepod oxidative status and reproduction.
    Vehmaa A; Hogfors H; Gorokhova E; Brutemark A; Holmborn T; Engström-Öst J
    Ecol Evol; 2013 Nov; 3(13):4548-57. PubMed ID: 24340194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular diet analysis enables detection of diatom and cyanobacteria DNA in the gut of Macoma balthica.
    Garrison JA; Motwani NH; Broman E; Nascimento FJA
    PLoS One; 2022; 17(11):e0278070. PubMed ID: 36417463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fitness consequences for copepods feeding on a red tide dinoflagellate: deciphering the effects of nutritional value, toxicity, and feeding behavior.
    Prince EK; Lettieri L; McCurdy KJ; Kubanek J
    Oecologia; 2006 Mar; 147(3):479-88. PubMed ID: 16261377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strains of the toxic and bloom-forming Nodularia spumigena (cyanobacteria) can degrade methylphosphonate and release methane.
    Teikari JE; Fewer DP; Shrestha R; Hou S; Leikoski N; Mäkelä M; Simojoki A; Hess WR; Sivonen K
    ISME J; 2018 Jun; 12(6):1619-1630. PubMed ID: 29445131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Genomics of the Baltic Sea Toxic Cyanobacteria
    Teikari JE; Hou S; Wahlsten M; Hess WR; Sivonen K
    Front Microbiol; 2018; 9():356. PubMed ID: 29568283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diversity of toxic and nontoxic nodularia isolates (cyanobacteria) and filaments from the Baltic Sea.
    Laamanen MJ; Gugger MF; Lehtimäki JM; Haukka K; Sivonen K
    Appl Environ Microbiol; 2001 Oct; 67(10):4638-47. PubMed ID: 11571167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial diversity and function in the Baltic Sea with an emphasis on cyanobacteria.
    Sivonen K; Halinen K; Sihvonen LM; Koskenniemi K; Sinkko H; Rantasärkkä K; Moisander PH; Lyra C
    Ambio; 2007 Apr; 36(2-3):180-5. PubMed ID: 17520932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antioxidant responses of triangle sail mussel Hyriopsis cumingii exposed to toxic Microcystis aeruginosa and thermal stress.
    Liu Y; Yang M; Zheng L; Nguyen H; Ni L; Song S; Sui Y
    Sci Total Environ; 2020 Nov; 743():140754. PubMed ID: 32758840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.