These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 35058887)

  • 21. A systematic review on bioplastic-soil interaction: Exploring the effects of residual bioplastics on the soil geoenvironment.
    Chah CN; Banerjee A; Gadi VK; Sekharan S; Katiyar V
    Sci Total Environ; 2022 Dec; 851(Pt 2):158311. PubMed ID: 36037904
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bacterial dynamics during the burial of starch-based bioplastic and oxo-low-density-polyethylene in compost soil.
    Wicaksono JA; Purwadaria T; Yulandi A; Tan WA
    BMC Microbiol; 2022 Dec; 22(1):309. PubMed ID: 36536283
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in microbial community structure during adaptation towards polyhydroxyalkanoates production.
    Ciesielski S; Klimiuk E; Mozejko J; Nowakowska E; Pokój T
    Pol J Microbiol; 2009; 58(2):131-9. PubMed ID: 19824397
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioplastic production in terms of life cycle assessment: A state-of-the-art review.
    Ali SS; Abdelkarim EA; Elsamahy T; Al-Tohamy R; Li F; Kornaros M; Zuorro A; Zhu D; Sun J
    Environ Sci Ecotechnol; 2023 Jul; 15():100254. PubMed ID: 37020495
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Narrowing the Gap for Bioplastic Use in Food Packaging: An Update.
    Zhao X; Cornish K; Vodovotz Y
    Environ Sci Technol; 2020 Apr; 54(8):4712-4732. PubMed ID: 32202110
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biosynthesis of Polyhydroxyalkanoates (PHAs) by the Valorization of Biomass and Synthetic Waste.
    Javaid H; Nawaz A; Riaz N; Mukhtar H; -Ul-Haq I; Shah KA; Khan H; Naqvi SM; Shakoor S; Rasool A; Ullah K; Manzoor R; Kaleem I; Murtaza G
    Molecules; 2020 Nov; 25(23):. PubMed ID: 33255864
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sustainable Bioplastic Made from Biomass DNA and Ionomers.
    Han J; Guo Y; Wang H; Zhang K; Yang D
    J Am Chem Soc; 2021 Nov; 143(46):19486-19497. PubMed ID: 34775757
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production of bioplastic through food waste valorization.
    Tsang YF; Kumar V; Samadar P; Yang Y; Lee J; Ok YS; Song H; Kim KH; Kwon EE; Jeon YJ
    Environ Int; 2019 Jun; 127():625-644. PubMed ID: 30991219
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Algal bioplastics: current market trends and technical aspects.
    Nanda N; Bharadvaja N
    Clean Technol Environ Policy; 2022; 24(9):2659-2679. PubMed ID: 35855786
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Opportunities in the microbial valorization of sugar industrial organic waste to biodegradable smart food packaging materials.
    Jayasekara S; Dissanayake L; Jayakody LN
    Int J Food Microbiol; 2022 Sep; 377():109785. PubMed ID: 35752069
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Comprehensive Review on the Emerging Roles of Nanofillers and Plasticizers towards Sustainable Starch-Based Bioplastic Fabrication.
    Tan SX; Andriyana A; Ong HC; Lim S; Pang YL; Ngoh GC
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215577
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production of polyhydroxyalkanoates from renewable resources: a review on prospects, challenges and applications.
    Mahato RP; Kumar S; Singh P
    Arch Microbiol; 2023 Apr; 205(5):172. PubMed ID: 37017747
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sustainable applications of polyhydroxyalkanoates in various fields: A critical review.
    Pandey A; Adama N; Adjallé K; Blais JF
    Int J Biol Macromol; 2022 Nov; 221():1184-1201. PubMed ID: 36113591
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microalgae-based bioplastics: Future solution towards mitigation of plastic wastes.
    Roy Chong JW; Tan X; Khoo KS; Ng HS; Jonglertjunya W; Yew GY; Show PL
    Environ Res; 2022 Apr; 206():112620. PubMed ID: 34968431
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biodegradable Dual-Network Cellulosic Composite Bioplastic Metafilm for Plastic Substitute.
    Wang D; Shi S; Mao Y; Lei L; Fu S; Hu J
    Angew Chem Int Ed Engl; 2023 Dec; 62(50):e202310995. PubMed ID: 37899667
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biowastes for biodegradable bioplastics production and end-of-life scenarios in circular bioeconomy and biorefinery concept.
    Ali SS; Elsamahy T; Abdelkarim EA; Al-Tohamy R; Kornaros M; Ruiz HA; Zhao T; Li F; Sun J
    Bioresour Technol; 2022 Nov; 363():127869. PubMed ID: 36064080
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Green Bioplastics as Part of a Circular Bioeconomy.
    Karan H; Funk C; Grabert M; Oey M; Hankamer B
    Trends Plant Sci; 2019 Mar; 24(3):237-249. PubMed ID: 30612789
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advances in the use of microalgal-bacterial consortia for wastewater treatment: Community structures, interactions, economic resource reclamation, and study techniques.
    Mu R; Jia Y; Ma G; Liu L; Hao K; Qi F; Shao Y
    Water Environ Res; 2021 Aug; 93(8):1217-1230. PubMed ID: 33305497
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioplastic recovery from wastewater: A new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures.
    Mannina G; Presti D; Montiel-Jarillo G; Suárez-Ojeda ME
    Bioresour Technol; 2019 Jun; 282():361-369. PubMed ID: 30884455
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biodegradation of bioplastics in natural environments.
    Emadian SM; Onay TT; Demirel B
    Waste Manag; 2017 Jan; 59():526-536. PubMed ID: 27742230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.