These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 35058947)

  • 1. Rapid Genome Evolution and Adaptation of
    Hu Y; Wu X; Jin G; Peng J; Leng R; Li L; Gui D; Fan C; Zhang C
    Front Plant Sci; 2021; 12():772655. PubMed ID: 35058947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic analysis of field pennycress (Thlaspi arvense) provides insights into mechanisms of adaptation to high elevation.
    Geng Y; Guan Y; Qiong L; Lu S; An M; Crabbe MJC; Qi J; Zhao F; Qiao Q; Zhang T
    BMC Biol; 2021 Jul; 19(1):143. PubMed ID: 34294107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome of
    Zhang T; Qiao Q; Novikova PY; Wang Q; Yue J; Guan Y; Ming S; Liu T; De J; Liu Y; Al-Shehbaz IA; Sun H; Van Montagu M; Huang J; Van de Peer Y; Qiong L
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):7137-7146. PubMed ID: 30894495
    [No Abstract]   [Full Text] [Related]  

  • 4. Comparative genome organization reveals a single copy of CBF in the freezing tolerant crucifer Thlaspi arvense.
    Zhou N; Robinson SJ; Huebert T; Bate NJ; Parkin IA
    Plant Mol Biol; 2007 Nov; 65(5):693-705. PubMed ID: 17899397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting the wild crucifer Thlaspi arvense to identify conserved and novel genes expressed during a plant's response to cold stress.
    Sharma N; Cram D; Huebert T; Zhou N; Parkin IA
    Plant Mol Biol; 2007 Jan; 63(2):171-84. PubMed ID: 16972165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LTR-retrotransposons in plants: Engines of evolution.
    Galindo-González L; Mhiri C; Deyholos MK; Grandbastien MA
    Gene; 2017 Aug; 626():14-25. PubMed ID: 28476688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosomal distribution and evolution of abundant retrotransposons in plants: gypsy elements in diploid and polyploid Brachiaria forage grasses.
    Santos FC; Guyot R; do Valle CB; Chiari L; Techio VH; Heslop-Harrison P; Vanzela AL
    Chromosome Res; 2015 Sep; 23(3):571-82. PubMed ID: 26386563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication.
    Kim S; Park J; Yeom SI; Kim YM; Seo E; Kim KT; Kim MS; Lee JM; Cheong K; Shin HS; Kim SB; Han K; Lee J; Park M; Lee HA; Lee HY; Lee Y; Oh S; Lee JH; Choi E; Choi E; Lee SE; Jeon J; Kim H; Choi G; Song H; Lee J; Lee SC; Kwon JK; Lee HY; Koo N; Hong Y; Kim RW; Kang WH; Huh JH; Kang BC; Yang TJ; Lee YH; Bennetzen JL; Choi D
    Genome Biol; 2017 Nov; 18(1):210. PubMed ID: 29089032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retrotranspositions in orthologous regions of closely related grass species.
    Du C; Swigonová Z; Messing J
    BMC Evol Biol; 2006 Aug; 6():62. PubMed ID: 16914031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences.
    Gao L; McCarthy EM; Ganko EW; McDonald JF
    BMC Genomics; 2004 Mar; 5(1):18. PubMed ID: 15040813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The genome and transcriptome of Trichormus sp. NMC-1: insights into adaptation to extreme environments on the Qinghai-Tibet Plateau.
    Qiao Q; Huang Y; Qi J; Qu M; Jiang C; Lin P; Li R; Song L; Yonezawa T; Hasegawa M; Crabbe MJ; Chen F; Zhang T; Zhong Y
    Sci Rep; 2016 Jul; 6():29404. PubMed ID: 27381465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-evolution of plant LTR-retrotransposons and their host genomes.
    Zhao M; Ma J
    Protein Cell; 2013 Jul; 4(7):493-501. PubMed ID: 23794032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome sequencing of Crucihimalaya himalaica (Brassicaceae) reveals how Arabidopsis close relative adapt to the Qinghai-Tibet Plateau.
    Qiao Q; Wang Q; Han X; Guan Y; Sun H; Zhong Y; Huang J; Zhang T
    Sci Rep; 2016 Feb; 6():21729. PubMed ID: 26906946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Weak Effect of
    Wang Y; Dai A; Tang T
    Front Plant Sci; 2021; 12():830079. PubMed ID: 35111190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constant conflict between Gypsy LTR retrotransposons and CHH methylation within a stress-adapted mangrove genome.
    Wang Y; Liang W; Tang T
    New Phytol; 2018 Nov; 220(3):922-935. PubMed ID: 29762876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification, characterization and distribution of transposable elements in the flax (Linum usitatissimum L.) genome.
    González LG; Deyholos MK
    BMC Genomics; 2012 Nov; 13():644. PubMed ID: 23171245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transposon dynamics in the emerging oilseed crop Thlaspi arvense.
    Contreras-Garrido A; Galanti D; Movilli A; Becker C; Bossdorf O; Drost HG; Weigel D
    PLoS Genet; 2024 Jan; 20(1):e1011141. PubMed ID: 38295109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of miniature inverted-repeat transposable elements (MITEs) and long terminal repeat (LTR) retrotransposons in six Citrus species.
    Liu Y; Tahir Ul Qamar M; Feng JW; Ding Y; Wang S; Wu G; Ke L; Xu Q; Chen LL
    BMC Plant Biol; 2019 Apr; 19(1):140. PubMed ID: 30987586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic Landscape of Long Terminal Repeat Retrotransposons (LTR-RTs) and Solo LTRs as Shaped by Ectopic Recombination in Chicken and Zebra Finch.
    Ji Y; DeWoody JA
    J Mol Evol; 2016 Jun; 82(6):251-63. PubMed ID: 27154235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide characterization of LTR retrotransposons in the non-model deep-sea annelid Lamellibrachia luymesi.
    Aroh O; Halanych KM
    BMC Genomics; 2021 Jun; 22(1):466. PubMed ID: 34157969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.