These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 35058948)

  • 1. Outdoor Plant Segmentation With Deep Learning for High-Throughput Field Phenotyping on a Diverse Wheat Dataset.
    Zenkl R; Timofte R; Kirchgessner N; Roth L; Hund A; Van Gool L; Walter A; Aasen H
    Front Plant Sci; 2021; 12():774068. PubMed ID: 35058948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bagging Improves the Performance of Deep Learning-Based Semantic Segmentation with Limited Labeled Images: A Case Study of Crop Segmentation for High-Throughput Plant Phenotyping.
    Zhan Y; Zhou Y; Bai G; Ge Y
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine Learning Methods for Automatic Segmentation of Images of Field- and Glasshouse-Based Plants for High-Throughput Phenotyping.
    Okyere FG; Cudjoe D; Sadeghi-Tehran P; Virlet N; Riche AB; Castle M; Greche L; Mohareb F; Simms D; Mhada M; Hawkesford MJ
    Plants (Basel); 2023 May; 12(10):. PubMed ID: 37653952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection and analysis of wheat spikes using Convolutional Neural Networks.
    Hasan MM; Chopin JP; Laga H; Miklavcic SJ
    Plant Methods; 2018; 14():100. PubMed ID: 30459822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SpikeSegNet-a deep learning approach utilizing encoder-decoder network with hourglass for spike segmentation and counting in wheat plant from visual imaging.
    Misra T; Arora A; Marwaha S; Chinnusamy V; Rao AR; Jain R; Sahoo RN; Ray M; Kumar S; Raju D; Jha RR; Nigam A; Goel S
    Plant Methods; 2020; 16():40. PubMed ID: 32206080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperspectral imaging combined with machine learning as a tool to obtain high-throughput plant salt-stress phenotyping.
    Feng X; Zhan Y; Wang Q; Yang X; Yu C; Wang H; Tang Z; Jiang D; Peng C; He Y
    Plant J; 2020 Mar; 101(6):1448-1461. PubMed ID: 31680357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An image analysis pipeline for automated classification of imaging light conditions and for quantification of wheat canopy cover time series in field phenotyping.
    Yu K; Kirchgessner N; Grieder C; Walter A; Hund A
    Plant Methods; 2017; 13():15. PubMed ID: 28344634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards Automated Analysis of Grain Spikes in Greenhouse Images Using Neural Network Approaches: A Comparative Investigation of Six Methods.
    Ullah S; Henke M; Narisetti N; Panzarová K; Trtílek M; Hejatko J; Gladilin E
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning for Image Analysis: Leaf Disease Segmentation.
    F Danilevicz M; Bayer PE
    Methods Mol Biol; 2022; 2443():429-449. PubMed ID: 35037219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing Green Fraction Estimation in Rice and Wheat Crops: A Self-Supervised Deep Learning Semantic Segmentation Approach.
    Gao Y; Li Y; Jiang R; Zhan X; Lu H; Guo W; Yang W; Ding Y; Liu S
    Plant Phenomics; 2023; 5():0064. PubMed ID: 37469555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis.
    Lee U; Chang S; Putra GA; Kim H; Kim DH
    PLoS One; 2018; 13(4):e0196615. PubMed ID: 29702690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling of machine learning methods to improve estimation of ground coverage from unmanned aerial vehicle (UAV) imagery for high-throughput phenotyping of crops.
    Hu P; Chapman SC; Zheng B
    Funct Plant Biol; 2021 Jul; 48(8):766-779. PubMed ID: 33663681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Learning Based Greenhouse Image Segmentation and Shoot Phenotyping (DeepShoot).
    Narisetti N; Henke M; Neumann K; Stolzenburg F; Altmann T; Gladilin E
    Front Plant Sci; 2022; 13():906410. PubMed ID: 35909752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-feature data repository development and analytics for image cosegmentation in high-throughput plant phenotyping.
    Quiñones R; Munoz-Arriola F; Choudhury SD; Samal A
    PLoS One; 2021; 16(9):e0257001. PubMed ID: 34473794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Connected-SegNets: A Deep Learning Model for Breast Tumor Segmentation from X-ray Images.
    Alkhaleefah M; Tan TH; Chang CH; Wang TC; Ma SC; Chang L; Chang YL
    Cancers (Basel); 2022 Aug; 14(16):. PubMed ID: 36011022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ThelR547v1-An Asymmetric Dilated Convolutional Neural Network for Real-time Semantic Segmentation of Horticultural Crops.
    Islam MP; Hatou K; Aihara T; Kawahara M; Okamoto S; Senoo S; Sumire K
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Comprehensive Review of High Throughput Phenotyping and Machine Learning for Plant Stress Phenotyping.
    Gill T; Gill SK; Saini DK; Chopra Y; de Koff JP; Sandhu KS
    Phenomics; 2022 Jun; 2(3):156-183. PubMed ID: 36939773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images.
    Orlando N; Gillies DJ; Gyacskov I; Romagnoli C; D'Souza D; Fenster A
    Med Phys; 2020 Jun; 47(6):2413-2426. PubMed ID: 32166768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global Wheat Head Detection (GWHD) Dataset: A Large and Diverse Dataset of High-Resolution RGB-Labelled Images to Develop and Benchmark Wheat Head Detection Methods.
    David E; Madec S; Sadeghi-Tehran P; Aasen H; Zheng B; Liu S; Kirchgessner N; Ishikawa G; Nagasawa K; Badhon MA; Pozniak C; de Solan B; Hund A; Chapman SC; Baret F; Stavness I; Guo W
    Plant Phenomics; 2020; 2020():3521852. PubMed ID: 33313551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Different Machine Learning Algorithms for the Prediction of the Wheat Grain Filling Stage Using RGB Images.
    Song Y; Sun Z; Zhang R; Min H; Li Q; Cai J; Wang X; Zhou Q; Jiang D
    Plants (Basel); 2023 Nov; 12(23):. PubMed ID: 38068677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.