BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35059097)

  • 21. Observation of Considerable Upconversion Enhancement Induced by Cu2-xS Plasmon Nanoparticles.
    Zhou D; Liu D; Xu W; Yin Z; Chen X; Zhou P; Cui S; Chen Z; Song H
    ACS Nano; 2016 May; 10(5):5169-79. PubMed ID: 27149281
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Morphology Control of Au-Ni Hybrid Nanoparticles: Exploring Heterostructures and Optical Tuning.
    Hwang YJ; Park Y; Jeong W; Kim M; Lee H; An B; Lee Y; Jeong H; Kim G; Choi J; Ha DH
    Inorg Chem; 2024 Jun; 63(25):11660-11666. PubMed ID: 38861724
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hybrid gold-silica nanoparticles for plasmonic applications: A comparison study of synthesis methods for increasing gold coverage.
    Trihan R; Bogucki O; Kozlowska A; Ihle M; Ziesche S; Fetliński B; Janaszek B; Kieliszczyk M; Kaczkan M; Rossignol F; Aimable A
    Heliyon; 2023 May; 9(5):e15977. PubMed ID: 37223706
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of Plasmonic Cu
    Sugawa K; Tsunenari N; Takeda H; Fujiwara S; Akiyama T; Honda J; Igari S; Inoue W; Tokuda K; Takeshima N; Watanuki Y; Tsukahara S; Takase K; Umegaki T; Kojima Y; Nishimiya N; Fukuda N; Kusaka Y; Ushijima H; Otsuki J
    Langmuir; 2017 Jun; 33(23):5685-5695. PubMed ID: 28525285
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct photocatalysis for organic synthesis by using plasmonic-metal nanoparticles irradiated with visible light.
    Xiao Q; Jaatinen E; Zhu H
    Chem Asian J; 2014 Nov; 9(11):3046-64. PubMed ID: 25048419
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tunable plasmon resonance of molybdenum oxide nanoparticles synthesized in non-aqueous media.
    Lee SH; Nishi H; Tatsuma T
    Chem Commun (Camb); 2017 Nov; 53(94):12680-12683. PubMed ID: 29134208
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmonic Properties of Individual Gallium Nanoparticles.
    Horák M; Čalkovský V; Mach J; Křápek V; Šikola T
    J Phys Chem Lett; 2023 Mar; 14(8):2012-2019. PubMed ID: 36794890
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Arbitrary control of the diffusion potential between a plasmonic metal and a semiconductor by an angstrom-thick interface dipole layer.
    Oshikiri T; Sawayanagi H; Nakamura K; Ueno K; Katase T; Ohta H; Misawa H
    J Chem Phys; 2020 Jan; 152(3):034705. PubMed ID: 31968952
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tuning the localized surface plasmon resonance in Cu(2-x)Se nanocrystals by postsynthetic ligand exchange.
    Balitskii OA; Sytnyk M; Stangl J; Primetzhofer D; Groiss H; Heiss W
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17770-5. PubMed ID: 25233007
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmonic coupling in closed-packed ordered gallium nanoparticles.
    Catalán-Gómez S; Bran C; Vázquez M; Vázquez L; Pau JL; Redondo-Cubero A
    Sci Rep; 2020 Mar; 10(1):4187. PubMed ID: 32144349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphology and Optical Properties of Gas-Phase-Synthesized Plasmonic Nanoparticles: Cu and Cu/MgO.
    D'Addato S; Lanza M; Boiani A; Spurio E; Pelatti S; Paolicelli G; Luches P
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806555
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shining Light on Aluminum Nanoparticle Synthesis.
    Jacobson CR; Solti D; Renard D; Yuan L; Lou M; Halas NJ
    Acc Chem Res; 2020 Sep; 53(9):2020-2030. PubMed ID: 32865962
    [TBL] [Abstract][Full Text] [Related]  

  • 33. One-Step Synthesis of Polypyrrole-Coated Gold Nanoparticles for Use as a Photothermally Active Nano-System.
    Fadel M; Fadeel DA; Ibrahim M; Hathout RM; El-Kholy AI
    Int J Nanomedicine; 2020; 15():2605-2615. PubMed ID: 32368043
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmonic magnesium nanoparticles decorated with palladium catalyze thermal and light-driven hydrogenation of acetylene.
    Lomonosov V; Wayman TMR; Hopper ER; Ivanov YP; Divitini G; Ringe E
    Nanoscale; 2023 Apr; 15(16):7420-7429. PubMed ID: 36988987
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Resonances of nanoparticles with poor plasmonic metal tips.
    Ringe E; DeSantis CJ; Collins SM; Duchamp M; Dunin-Borkowski RE; Skrabalak SE; Midgley PA
    Sci Rep; 2015 Nov; 5():17431. PubMed ID: 26617270
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tailored Engineering of Bimetallic Plasmonic Au@Ag Core@Shell Nanoparticles.
    Mahmud S; Satter SS; Singh AK; Rahman MM; Mollah MYA; Susan MABH
    ACS Omega; 2019 Nov; 4(19):18061-18075. PubMed ID: 31720509
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aggregation-Driven Controllable Plasmonic Transition of Silica-Coated Gold Nanoparticles with Temperature-Dependent Polymer-Nanoparticle Interactions for Potential Applications in Optoelectronic Devices.
    Kwon NK; Lee TK; Kwak SK; Kim SY
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39688-39698. PubMed ID: 29053247
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cu
    Yuan L; Hu W; Zhang H; Chen L; Wang J; Wang Q
    Front Bioeng Biotechnol; 2020; 8():21. PubMed ID: 32133347
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasmonic Supercrystals.
    García-Lojo D; Núñez-Sánchez S; Gómez-Graña S; Grzelczak M; Pastoriza-Santos I; Pérez-Juste J; Liz-Marzán LM
    Acc Chem Res; 2019 Jul; 52(7):1855-1864. PubMed ID: 31243968
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Topologically Enclosed Aluminum Voids as Plasmonic Nanostructures.
    Zhu Y; Nakashima PNH; Funston AM; Bourgeois L; Etheridge J
    ACS Nano; 2017 Nov; 11(11):11383-11392. PubMed ID: 29094925
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.