These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 35059392)

  • 21. Effect of echinacoside on kidney fibrosis by inhibition of TGF-β1/Smads signaling pathway in the db/db mice model of diabetic nephropathy.
    Tang F; Hao Y; Zhang X; Qin J
    Drug Des Devel Ther; 2017; 11():2813-2826. PubMed ID: 29033543
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibition of Akt/mTOR/p70S6K Signaling Activity With Huangkui Capsule Alleviates the Early Glomerular Pathological Changes in Diabetic Nephropathy.
    Wu W; Hu W; Han WB; Liu YL; Tu Y; Yang HM; Fang QJ; Zhou MY; Wan ZY; Tang RM; Tang HT; Wan YG
    Front Pharmacol; 2018; 9():443. PubMed ID: 29881349
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Research Progress on the Pathological Mechanisms of Podocytes in Diabetic Nephropathy.
    Zhang L; Wen Z; Han L; Zheng Y; Wei Y; Wang X; Wang Q; Fang X; Zhao L; Tong X
    J Diabetes Res; 2020; 2020():7504798. PubMed ID: 32695831
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hyperoside reduces albuminuria in diabetic nephropathy at the early stage through ameliorating renal damage and podocyte injury.
    Zhang J; Fu H; Xu Y; Niu Y; An X
    J Nat Med; 2016 Oct; 70(4):740-8. PubMed ID: 27255369
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glomerular mesangial cell and podocyte injuries in diabetic nephropathy.
    Tung CW; Hsu YC; Shih YH; Chang PJ; Lin CL
    Nephrology (Carlton); 2018 Oct; 23 Suppl 4():32-37. PubMed ID: 30298646
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Huidouba Improved Podocyte Injury by Down-Regulating Nox4 Expression in Rats With Diabetic Nephropathy.
    Yang K; Bai Y; Yu N; Lu B; Han G; Yin C; Pang Z
    Front Pharmacol; 2020; 11():587995. PubMed ID: 33390962
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Signaling pathways in diabetic nephropathy.
    Kawanami D; Matoba K; Utsunomiya K
    Histol Histopathol; 2016 Oct; 31(10):1059-67. PubMed ID: 27094540
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MicroRNA-27a promotes podocyte injury via PPARγ-mediated β-catenin activation in diabetic nephropathy.
    Zhou Z; Wan J; Hou X; Geng J; Li X; Bai X
    Cell Death Dis; 2017 Mar; 8(3):e2658. PubMed ID: 28277542
    [TBL] [Abstract][Full Text] [Related]  

  • 29. From the periphery of the glomerular capillary wall toward the center of disease: podocyte injury comes of age in diabetic nephropathy.
    Wolf G; Chen S; Ziyadeh FN
    Diabetes; 2005 Jun; 54(6):1626-34. PubMed ID: 15919782
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prevalence and Management of Diabetic Nephropathy in Western Countries.
    Satirapoj B; Adler SG
    Kidney Dis (Basel); 2015 May; 1(1):61-70. PubMed ID: 27536666
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exogenous spermine attenuates diabetic kidney injury in rats by inhibiting AMPK/mTOR signaling pathway.
    Zhang X; Zhang L; Chen Z; Li S; Che B; Wang N; Chen J; Xu C; Wei C
    Int J Mol Med; 2021 Mar; 47(3):. PubMed ID: 33537831
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diabetic nephropathy: A potential savior with 'rotten-egg' smell.
    Dugbartey GJ
    Pharmacol Rep; 2017 Apr; 69(2):331-339. PubMed ID: 28183033
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pathogenesis of diabetic nephropathy.
    Raptis AE; Viberti G
    Exp Clin Endocrinol Diabetes; 2001; 109 Suppl 2():S424-37. PubMed ID: 11460589
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acute Kidney Injury and Progression of Diabetic Kidney Disease.
    Yu SM; Bonventre JV
    Adv Chronic Kidney Dis; 2018 Mar; 25(2):166-180. PubMed ID: 29580581
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Drug Targets for Oxidative Podocyte Injury in Diabetic Nephropathy.
    Bhatti AB; Usman M
    Cureus; 2015 Dec; 7(12):e393. PubMed ID: 26798569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Collapsing glomerulopathy superimposed on diabetic nephropathy: insights into etiology of an under-recognized, severe pattern of glomerular injury.
    Salvatore SP; Reddi AS; Chandran CB; Chevalier JM; Okechukwu CN; Seshan SV
    Nephrol Dial Transplant; 2014 Feb; 29(2):392-9. PubMed ID: 24081860
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Betanin, isolated from fruits of Opuntia elatior Mill attenuates renal fibrosis in diabetic rats through regulating oxidative stress and TGF-β pathway.
    Sutariya B; Saraf M
    J Ethnopharmacol; 2017 Feb; 198():432-443. PubMed ID: 28111218
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cyclin G2 regulates canonical Wnt signalling via interaction with Dapper1 to attenuate tubulointerstitial fibrosis in diabetic nephropathy.
    Zhao C; Gao J; Li S; Liu Q; Hou X; Xing X; Wang D; Sun M; Wang S; Luo Y
    J Cell Mol Med; 2020 Mar; 24(5):2749-2760. PubMed ID: 31978940
    [TBL] [Abstract][Full Text] [Related]  

  • 39. LncRNA SOX2OT alleviates mesangial cell proliferation and fibrosis in diabetic nephropathy via Akt/mTOR-mediated autophagy.
    Chen K; Yu B; Liao J
    Mol Med; 2021 Jul; 27(1):71. PubMed ID: 34238205
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Liraglutide suppresses production of extracellular matrix proteins and ameliorates renal injury of diabetic nephropathy by enhancing Wnt/β-catenin signaling.
    Huang L; Lin T; Shi M; Chen X; Wu P
    Am J Physiol Renal Physiol; 2020 Sep; 319(3):F458-F468. PubMed ID: 32715762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.