These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
561 related articles for article (PubMed ID: 35059432)
1. Bioinformatic Analysis Combined With Experimental Validation Reveals Novel Hub Genes and Pathways Associated With Focal Segmental Glomerulosclerosis. Hou YP; Diao TT; Xu ZH; Mao XY; Wang C; Li B Front Mol Biosci; 2021; 8():691966. PubMed ID: 35059432 [No Abstract] [Full Text] [Related]
2. Renal tubular gen e biomarkers identification based on immune infiltrates in focal segmental glomerulosclerosis. Bai J; Pu X; Zhang Y; Dai E Ren Fail; 2022 Dec; 44(1):966-986. PubMed ID: 35713363 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome meta-analysis and validation to discovery of hub genes and pathways in focal and segmental glomerulosclerosis. Roointan A; Ghaeidamini M; Yavari P; Naimi A; Gheisari Y; Gholaminejad A BMC Nephrol; 2024 Sep; 25(1):293. PubMed ID: 39232654 [TBL] [Abstract][Full Text] [Related]
4. Identifying Ding J; Liu Y; Lai Y PeerJ; 2020; 8():e10419. PubMed ID: 33282565 [TBL] [Abstract][Full Text] [Related]
5. An Integrative in silico Study to Discover Key Drivers in Pathogenicity of Focal and Segmental Glomerulosclerosis. Gholaminejad A; Ghaeidamini M; Simal-Gandara J; Roointan A Kidney Blood Press Res; 2022; 47(6):410-422. PubMed ID: 35306494 [TBL] [Abstract][Full Text] [Related]
6. Construction of miRNA-mRNA network for the identification of key biological markers and their associated pathways in IgA nephropathy by employing the integrated bioinformatics analysis. Noor F; Saleem MH; Aslam MF; Ahmad A; Aslam S Saudi J Biol Sci; 2021 Sep; 28(9):4938-4945. PubMed ID: 34466069 [TBL] [Abstract][Full Text] [Related]
7. Common gene signatures and key pathways in hypopharyngeal and esophageal squamous cell carcinoma: Evidence from bioinformatic analysis. Zhou R; Liu D; Zhu J; Zhang T Medicine (Baltimore); 2020 Oct; 99(42):e22434. PubMed ID: 33080677 [TBL] [Abstract][Full Text] [Related]
8. Identification of hub genes and potential molecular mechanisms in gastric cancer by integrated bioinformatics analysis. Cao L; Chen Y; Zhang M; Xu DQ; Liu Y; Liu T; Liu SX; Wang P PeerJ; 2018; 6():e5180. PubMed ID: 30002985 [TBL] [Abstract][Full Text] [Related]
9. Bioinformatic Analysis Identifies Potential Extracellular Matrix Related Genes in the Pathogenesis of Early Onset Preeclampsia. Zhan F; He L; Wu J; Wu X Biochem Genet; 2024 Apr; 62(2):646-665. PubMed ID: 37498421 [TBL] [Abstract][Full Text] [Related]
10. Integrative bioinformatics approaches for identifying potential biomarkers and pathways involved in non-obstructive azoospermia. Hu T; Luo S; Xi Y; Tu X; Yang X; Zhang H; Feng J; Wang C; Zhang Y Transl Androl Urol; 2021 Jan; 10(1):243-257. PubMed ID: 33532314 [TBL] [Abstract][Full Text] [Related]
11. Integrated bioinformatics analysis reveals novel key biomarkers and potential candidate small molecule drugs in gastric cancer. Wu Q; Zhang B; Wang Z; Hu X; Sun Y; Xu R; Chen X; Wang Q; Ju F; Ren S; Zhang C; Qi F; Ma Q; Xue Q; Zhou YL Pathol Res Pract; 2019 May; 215(5):1038-1048. PubMed ID: 30975489 [TBL] [Abstract][Full Text] [Related]
12. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis. Wen P; Chidanguro T; Shi Z; Gu H; Wang N; Wang T; Li Y; Gao J Mol Med Rep; 2018 Aug; 18(2):1538-1550. PubMed ID: 29845250 [TBL] [Abstract][Full Text] [Related]
13. Integrated microarray analysis to identify potential biomarkers and therapeutic targets in dilated cardiomyopathy. Zhang H; Huo J; Jiang W; Shan Q Mol Med Rep; 2020 Aug; 22(2):915-925. PubMed ID: 32626989 [TBL] [Abstract][Full Text] [Related]
14. Identification of Hub Genes in Type 2 Diabetes Mellitus Using Bioinformatics Analysis. Lin Y; Li J; Wu D; Wang F; Fang Z; Shen G Diabetes Metab Syndr Obes; 2020; 13():1793-1801. PubMed ID: 32547141 [TBL] [Abstract][Full Text] [Related]
15. Identification of hub genes and regulators associated with pancreatic ductal adenocarcinoma based on integrated gene expression profile analysis. Shang M; Zhang L; Chen X; Zheng S Discov Med; 2019 Sep; 28(153):159-172. PubMed ID: 31926587 [TBL] [Abstract][Full Text] [Related]
16. Neutrophil Infiltration Characterized by Upregulation of S100A8, S100A9, S100A12 and CXCR2 Is Associated With the Co-Occurrence of Crohn's Disease and Peripheral Artery Disease. Yao Z; Zhang B; Niu G; Yan Z; Tong X; Zou Y; Li Y; Yang M Front Immunol; 2022; 13():896645. PubMed ID: 35795659 [TBL] [Abstract][Full Text] [Related]
17. Identification of potential biomarkers of vascular calcification using bioinformatics analysis and validation Chen C; Wu Y; Lu HL; Liu K; Qin X PeerJ; 2022; 10():e13138. PubMed ID: 35313524 [TBL] [Abstract][Full Text] [Related]
18. Screening and identification of potential hub genes and immune cell infiltration in the synovial tissue of rheumatoid arthritis by bioinformatic approach. Feng ZW; Tang YC; Sheng XY; Wang SH; Wang YB; Liu ZC; Liu JM; Geng B; Xia YY Heliyon; 2023 Jan; 9(1):e12799. PubMed ID: 36699262 [TBL] [Abstract][Full Text] [Related]
19. Identification of Key Inflammation-related Genes as Potential Diagnostic Biomarkers of Sepsis. Guo P; Wang R; Shen J; Zhang L; Mo W Altern Ther Health Med; 2023 Jul; 29(5):24-31. PubMed ID: 37235492 [TBL] [Abstract][Full Text] [Related]
20. Comprehensive analysis and identification of key genes and signaling pathways in the occurrence and metastasis of cutaneous melanoma. Dai H; Guo L; Lin M; Cheng Z; Li J; Tang J; Huan X; Huang Y; Xu K PeerJ; 2020; 8():e10265. PubMed ID: 33240619 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]