These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 35059595)
1. The Value of Tyrer-Cuzick Versus Gail Risk Modeling in Predicting Benefit from Screening MRI in Breast Cancer. Sevdalis A; Deng X; Bandyopadhyay D; McGuire KP Eur J Breast Health; 2022 Jan; 18(1):79-84. PubMed ID: 35059595 [TBL] [Abstract][Full Text] [Related]
2. Use of Receiver Operating Characteristic (ROC) Curve Analysis for Tyrer-Cuzick and Gail in Breast Cancer Screening in Jiangxi Province, China. Zhang L; Jie Z; Xu S; Zhang L; Guo X Med Sci Monit; 2018 Aug; 24():5528-5532. PubMed ID: 30089770 [TBL] [Abstract][Full Text] [Related]
3. Mammographic density adds accuracy to both the Tyrer-Cuzick and Gail breast cancer risk models in a prospective UK screening cohort. Brentnall AR; Harkness EF; Astley SM; Donnelly LS; Stavrinos P; Sampson S; Fox L; Sergeant JC; Harvie MN; Wilson M; Beetles U; Gadde S; Lim Y; Jain A; Bundred S; Barr N; Reece V; Howell A; Cuzick J; Evans DG Breast Cancer Res; 2015 Dec; 17(1):147. PubMed ID: 26627479 [TBL] [Abstract][Full Text] [Related]
4. Distribution of Estimated Lifetime Breast Cancer Risk Among Women Undergoing Screening Mammography. Niell BL; Augusto B; McIntyre M; Conley CC; Gerke T; Roetzheim R; Garcia J; Vadaparampil ST AJR Am J Roentgenol; 2021 Jul; 217(1):48-55. PubMed ID: 33978450 [No Abstract] [Full Text] [Related]
5. Variation in Breast Cancer Risk Model Estimates Among Women in Their 40s Seen in Primary Care. Schonberg MA; Karamourtopoulos M; Pinheiro A; Davis RB; Sternberg SB; Mehta TS; Gilliam EA; Tung NM J Womens Health (Larchmt); 2022 Apr; 31(4):495-502. PubMed ID: 35073183 [No Abstract] [Full Text] [Related]
6. Performance of the Gail and Tyrer-Cuzick breast cancer risk assessment models in women screened in a primary care setting with the FHS-7 questionnaire. Vianna FSL; Giacomazzi J; Oliveira Netto CB; Nunes LN; Caleffi M; Ashton-Prolla P; Camey SA Genet Mol Biol; 2019; 42(1 suppl 1):232-237. PubMed ID: 31170278 [TBL] [Abstract][Full Text] [Related]
7. Comparative Analysis between the Gail, Tyrer-Cuzick and BRCAPRO Models for Breast Cancer Screening in Brazilian Population. Stevanato KP; Pedroso RB; Iora P; Santos LD; Pelloso FC; Melo WA; Carvalho MDB; Pelloso SM Asian Pac J Cancer Prev; 2019 Nov; 20(11):3407-3413. PubMed ID: 31759366 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of breast cancer risk assessment packages in the family history evaluation and screening programme. Amir E; Evans DG; Shenton A; Lalloo F; Moran A; Boggis C; Wilson M; Howell A J Med Genet; 2003 Nov; 40(11):807-14. PubMed ID: 14627668 [TBL] [Abstract][Full Text] [Related]
9. Performance of Breast Cancer Risk-Assessment Models in a Large Mammography Cohort. McCarthy AM; Guan Z; Welch M; Griffin ME; Sippo DA; Deng Z; Coopey SB; Acar A; Semine A; Parmigiani G; Braun D; Hughes KS J Natl Cancer Inst; 2020 May; 112(5):489-497. PubMed ID: 31556450 [TBL] [Abstract][Full Text] [Related]
10. Inclusion of Endogenous Plasma Dehydroepiandrosterone Sulfate and Mammographic Density in Risk Prediction Models for Breast Cancer. Gabrielson M; Ubhayasekera KA; Acharya SR; Franko MA; Eriksson M; Bergquist J; Czene K; Hall P Cancer Epidemiol Biomarkers Prev; 2020 Mar; 29(3):574-581. PubMed ID: 31948996 [TBL] [Abstract][Full Text] [Related]
12. Estimated breast cancer risk and screening outcomes among premenopausal women with non-cyclic mastalgia. Rogulski L; Bińczyk J Ginekol Pol; 2013 Sep; 84(9):754-7. PubMed ID: 24191512 [TBL] [Abstract][Full Text] [Related]
13. Effect of an Educational Intervention on Women's Health Care Provider Knowledge Gaps About Breast Cancer Risk Model Use and High-risk Screening Recommendations. Seitzman RL; Pushkin J; Berg WA J Breast Imaging; 2023 Feb; 5(1):30-39. PubMed ID: 38416962 [TBL] [Abstract][Full Text] [Related]
14. Development of a Bayesian classifier for breast cancer risk stratification: a feasibility study. Stojadinovic A; Eberhardt C; Henry L; Eberhardt J; Elster EA; Peoples GE; Nissan A; Shriver CD Eplasty; 2010 Mar; 10():e25. PubMed ID: 20418939 [TBL] [Abstract][Full Text] [Related]
15. Assessing the breast cancer risk distribution for women undergoing screening in British Columbia. Weisstock CR; Rajapakshe R; Bitgood C; McAvoy S; Gordon PB; Coldman AJ; Parker BA; Wilson C Cancer Prev Res (Phila); 2013 Oct; 6(10):1084-92. PubMed ID: 23963801 [TBL] [Abstract][Full Text] [Related]
16. Prospective validation of the NCI Breast Cancer Risk Assessment Tool (Gail Model) on 40,000 Australian women. Nickson C; Procopio P; Velentzis LS; Carr S; Devereux L; Mann GB; James P; Lee G; Wellard C; Campbell I Breast Cancer Res; 2018 Dec; 20(1):155. PubMed ID: 30572910 [TBL] [Abstract][Full Text] [Related]
17. Comparison of the Diagnostic Accuracy of Mammogram-based Deep Learning and Traditional Breast Cancer Risk Models in Patients Who Underwent Supplemental Screening with MRI. Lamb LR; Mercaldo SF; Ghaderi K; Carney A; Lehman CD Radiology; 2023 Sep; 308(3):e223077. PubMed ID: 37724967 [TBL] [Abstract][Full Text] [Related]
18. Predicting risk of breast cancer in postmenopausal women by hormone receptor status. Chlebowski RT; Anderson GL; Lane DS; Aragaki AK; Rohan T; Yasmeen S; Sarto G; Rosenberg CA; Hubbell FA; J Natl Cancer Inst; 2007 Nov; 99(22):1695-705. PubMed ID: 18000216 [TBL] [Abstract][Full Text] [Related]