BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 35059693)

  • 1. Deep J-Sense: Accelerated MRI Reconstruction via Unrolled Alternating Optimization.
    Arvinte M; Vishwanath S; Tewfik AH; Tamir JI
    Med Image Comput Comput Assist Interv; 2021; 12906():350-360. PubMed ID: 35059693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic evaluation of iterative deep neural networks for fast parallel MRI reconstruction with sensitivity-weighted coil combination.
    Hammernik K; Schlemper J; Qin C; Duan J; Summers RM; Rueckert D
    Magn Reson Med; 2021 Oct; 86(4):1859-1872. PubMed ID: 34110037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-supervised learning of physics-guided reconstruction neural networks without fully sampled reference data.
    Yaman B; Hosseini SAH; Moeller S; Ellermann J; Uğurbil K; Akçakaya M
    Magn Reson Med; 2020 Dec; 84(6):3172-3191. PubMed ID: 32614100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of hyperparameters for SMS reconstruction.
    Muftuler LT; Arpinar VE; Koch K; Bhave S; Yang B; Kaushik S; Banerjee S; Nencka A
    Magn Reson Imaging; 2020 Nov; 73():91-103. PubMed ID: 32835848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Federated End-to-End Unrolled Models for Magnetic Resonance Image Reconstruction.
    Levac BR; Arvinte M; Tamir JI
    Bioengineering (Basel); 2023 Mar; 10(3):. PubMed ID: 36978755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dense Recurrent Neural Networks for Accelerated MRI: History-Cognizant Unrolling of Optimization Algorithms.
    Hosseini SAH; Yaman B; Moeller S; Hong M; Akçakaya M
    IEEE J Sel Top Signal Process; 2020 Oct; 14(6):1280-1291. PubMed ID: 33747334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compressed sensing for high-resolution nonlipid suppressed
    Nassirpour S; Chang P; Avdievitch N; Henning A
    Magn Reson Med; 2018 Dec; 80(6):2311-2325. PubMed ID: 29707804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-scale Unrolled Deep Learning Framework for Accelerated Magnetic Resonance Imaging.
    Nakarmi U; Cheng JY; Rios EP; Mardani M; Pauly JM; Ying L; Vasanawala SS
    Proc IEEE Int Symp Biomed Imaging; 2020 Apr; 2020():1056-1059. PubMed ID: 33282118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Faithful Deep Sensitivity Estimation for Accelerated Magnetic Resonance Imaging.
    Wang Z; Fang H; Qian C; Shi B; Bao L; Zhu L; Zhou J; Wei W; Lin J; Guo D; Qu X
    IEEE J Biomed Health Inform; 2024 Feb; PP():. PubMed ID: 38315596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep complex convolutional network for fast reconstruction of 3D late gadolinium enhancement cardiac MRI.
    El-Rewaidy H; Neisius U; Mancio J; Kucukseymen S; Rodriguez J; Paskavitz A; Menze B; Nezafat R
    NMR Biomed; 2020 Jul; 33(7):e4312. PubMed ID: 32352197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternating Learning Approach for Variational Networks and Undersampling Pattern in Parallel MRI Applications.
    Zibetti MVW; Knoll F; Regatte RR
    IEEE Trans Comput Imaging; 2022; 8():449-461. PubMed ID: 35795003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learned Low-Rank Priors in Dynamic MR Imaging.
    Ke Z; Huang W; Cui ZX; Cheng J; Jia S; Wang H; Liu X; Zheng H; Ying L; Zhu Y; Liang D
    IEEE Trans Med Imaging; 2021 Dec; 40(12):3698-3710. PubMed ID: 34252024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep low-Rank plus sparse network for dynamic MR imaging.
    Huang W; Ke Z; Cui ZX; Cheng J; Qiu Z; Jia S; Ying L; Zhu Y; Liang D
    Med Image Anal; 2021 Oct; 73():102190. PubMed ID: 34340107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstruction of undersampled 3D non-Cartesian image-based navigators for coronary MRA using an unrolled deep learning model.
    Malavé MO; Baron CA; Koundinyan SP; Sandino CM; Ong F; Cheng JY; Nishimura DG
    Magn Reson Med; 2020 Aug; 84(2):800-812. PubMed ID: 32011021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly accelerated acquisition and homogeneous image reconstruction with rotating RF coil array at 7T-A phantom based study.
    Li M; Zuo Z; Jin J; Xue R; Trakic A; Weber E; Liu F; Crozier S
    J Magn Reson; 2014 Mar; 240():102-12. PubMed ID: 24365100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Memory-Efficient Training for Fully Unrolled Deep Learned PET Image Reconstruction with Iteration-Dependent Targets.
    Corda-D'Incan G; Schnabel JA; Reader AJ
    IEEE Trans Radiat Plasma Med Sci; 2022 May; 6(5):552-563. PubMed ID: 35664091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. J-MoDL: Joint Model-Based Deep Learning for Optimized Sampling and Reconstruction.
    Aggarwal HK; Jacob M
    IEEE J Sel Top Signal Process; 2020 Oct; 14(6):1151-1162. PubMed ID: 33613806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A deep cascade of ensemble of dual domain networks with gradient-based T1 assistance and perceptual refinement for fast MRI reconstruction.
    Murugesan B; Ramanarayanan S; Vijayarangan S; Ram K; Jagannathan NR; Sivaprakasam M
    Comput Med Imaging Graph; 2021 Jul; 91():101942. PubMed ID: 34087612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calibration-less multi-coil MR image reconstruction.
    Majumdar A; Ward RK
    Magn Reson Imaging; 2012 Sep; 30(7):1032-45. PubMed ID: 22503088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerated Musculoskeletal Magnetic Resonance Imaging.
    Yoon MA; Gold GE; Chaudhari AS
    J Magn Reson Imaging; 2023 Dec; ():. PubMed ID: 38156716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.