These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 35059941)

  • 1. Turbo prediction: a new approach for bioactivity prediction.
    Abdo A; Pupin M
    J Comput Aided Mol Des; 2022 Jan; 36(1):77-85. PubMed ID: 35059941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug-target interaction prediction with tree-ensemble learning and output space reconstruction.
    Pliakos K; Vens C
    BMC Bioinformatics; 2020 Feb; 21(1):49. PubMed ID: 32033537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioactive Molecule Prediction Using Extreme Gradient Boosting.
    Babajide Mustapha I; Saeed F
    Molecules; 2016 Jul; 21(8):. PubMed ID: 27483216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Machine Learning Approach for Drug-target Interaction Prediction using Wrapper Feature Selection and Class Balancing.
    Redkar S; Mondal S; Joseph A; Hareesha KS
    Mol Inform; 2020 May; 39(5):e1900062. PubMed ID: 32003548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Prediction of Drug-Target Interactions via Ensemble Learning.
    Ezzat A; Wu M; Li X; Kwoh CK
    Methods Mol Biol; 2019; 1903():239-254. PubMed ID: 30547446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of machine learning approaches for novel drug discovery.
    Lima AN; Philot EA; Trossini GH; Scott LP; Maltarollo VG; Honorio KM
    Expert Opin Drug Discov; 2016; 11(3):225-39. PubMed ID: 26814169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into Machine Learning-based Approaches for Virtual Screening in Drug Discovery: Existing Strategies and Streamlining Through FP-CADD.
    Hussain W; Rasool N; Khan YD
    Curr Drug Discov Technol; 2021; 18(4):463-472. PubMed ID: 32767944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactivity Comparison across Multiple Machine Learning Algorithms Using over 5000 Datasets for Drug Discovery.
    Lane TR; Foil DH; Minerali E; Urbina F; Zorn KM; Ekins S
    Mol Pharm; 2021 Jan; 18(1):403-415. PubMed ID: 33325717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extremely Randomized Machine Learning Methods for Compound Activity Prediction.
    Czarnecki WM; Podlewska S; Bojarski AJ
    Molecules; 2015 Nov; 20(11):20107-17. PubMed ID: 26569196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validating the validation: reanalyzing a large-scale comparison of deep learning and machine learning models for bioactivity prediction.
    Robinson MC; Glen RC; Lee AA
    J Comput Aided Mol Des; 2020 Jul; 34(7):717-730. PubMed ID: 31960253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of network link prediction in drug discovery.
    Abbas K; Abbasi A; Dong S; Niu L; Yu L; Chen B; Cai SM; Hasan Q
    BMC Bioinformatics; 2021 Apr; 22(1):187. PubMed ID: 33845763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative performance analysis of K-nearest neighbour (KNN) algorithm and its different variants for disease prediction.
    Uddin S; Haque I; Lu H; Moni MA; Gide E
    Sci Rep; 2022 Apr; 12(1):6256. PubMed ID: 35428863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QuantumTox: Utilizing quantum chemistry with ensemble learning for molecular toxicity prediction.
    Wang X; Wang L; Wang S; Ren Y; Chen W; Li X; Han P; Song T
    Comput Biol Med; 2023 May; 157():106744. PubMed ID: 36947905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BE-DTI': Ensemble framework for drug target interaction prediction using dimensionality reduction and active learning.
    Sharma A; Rani R
    Comput Methods Programs Biomed; 2018 Oct; 165():151-162. PubMed ID: 30337070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of anaerobic digestion performance and identification of critical operational parameters using machine learning algorithms.
    Wang L; Long F; Liao W; Liu H
    Bioresour Technol; 2020 Feb; 298():122495. PubMed ID: 31830658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning-to-rank technique based on ignoring meaningless ranking orders between compounds.
    Ohue M; Suzuki SD; Akiyama Y
    J Mol Graph Model; 2019 Nov; 92():192-200. PubMed ID: 31377536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Error Tolerance of Machine Learning Algorithms across Contemporary Biological Targets.
    Kaiser TM; Burger PB
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31167452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ensemble of heterogeneous classifiers for diagnosis and prediction of coronary artery disease with reduced feature subset.
    Velusamy D; Ramasamy K
    Comput Methods Programs Biomed; 2021 Jan; 198():105770. PubMed ID: 33027698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning prediction of oncology drug targets based on protein and network properties.
    Dezső Z; Ceccarelli M
    BMC Bioinformatics; 2020 Mar; 21(1):104. PubMed ID: 32171238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leveraging multiple data types for improved compound-kinase bioactivity prediction.
    Theisen R; Wang T; Ravikumar B; Rahman R; Cichońska A
    Nat Commun; 2024 Aug; 15(1):7596. PubMed ID: 39217147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.