These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 3506046)

  • 1. Visualization of the inner and outer surfaces of the cell membrane and cytoskeleton by polyethylene glycol embedding, subsequent deembedding, and rotary replication with platinum.
    Kondo H
    J Electron Microsc Tech; 1987 Sep; 7(1):17-27. PubMed ID: 3506046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rat kidney glomerular basement membrane visualized in situ by embedment-free sectioning and subsequent platinum-carbon replication.
    Kondo H
    J Electron Microsc Tech; 1990 Jan; 14(1):63-9. PubMed ID: 2299420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What we have learned and will learn from cell ultrastructure in embedment-free section electron microscopy.
    Kondo H
    Microsc Res Tech; 2008 Jun; 71(6):418-42. PubMed ID: 18286471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved procedures for electron microscopic visualization of the cytoskeleton of cultured cells.
    Svitkina TM; Verkhovsky AB; Borisy GG
    J Struct Biol; 1995; 115(3):290-303. PubMed ID: 8573471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The supramolecular organization of the keratinocyte cytoskeleton and extracellular matrix in human skin revealed by freezing-deep etching with rotary platinum-carbon shadow-casting].
    Popov VI; Voronkov VN
    Tsitologiia; 1990; 32(11):1078-83. PubMed ID: 2093242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastructural filament organization of hepatocyte cytoplasm revealed by embedment-free sections of rat liver.
    Keegan A; Batey R
    J Gastroenterol Hepatol; 1993; 8(5):451-6. PubMed ID: 8218993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for studying the three-dimensional organization of cytoskeletal elements of cells: improvements in the polyethylene glycol technique.
    Nagele RG; Roisen FJ; Lee H
    J Microsc; 1983 Feb; 129(Pt 2):179-84. PubMed ID: 6682450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [An analysis of the supramolecular organization of the olfactory neuroepithelium in the rat by freeze etching with rotary platinum-carbon shadow-casting].
    Popov VI; Khutsian SS; Allakhverdov BL; Novikov IuV; Novoselov VI; Fesenko EE
    Tsitologiia; 1990; 32(11):1090-3. PubMed ID: 2093245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fine structure of synapses of the central nervous system in resinless sections.
    Cohen RS; Wolosewick JJ; Becker RP; Pappas GD
    J Submicrosc Cytol; 1983 Oct; 15(4):849-63. PubMed ID: 6317879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Embedment-free section electron microscopy.
    Kondo H
    J Electron Microsc (Tokyo); 2006 Aug; 55(4):231-43. PubMed ID: 17185347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional cytoskeletal structures of the chinchilla organ of Corti: scanning electron microscopy application of the polyethylene glycol method.
    Nagasawa A; Harrison RV; Mount RJ; Harada Y
    Scanning Microsc; 1993 Sep; 7(3):897-906. PubMed ID: 8146617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel technique for high resolution analysis of the cytoskeleton.
    Trotter JA; Kelley RO
    Anat Rec; 1979 Sep; 195(1):7-14. PubMed ID: 386854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigations on polyethylene glycol-induced cell fusion - freeze fracture observations.
    Krähling H
    Acta Histochem Suppl; 1981; 23():219-23. PubMed ID: 6784169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of ultrathin frozen sections in electron microscopy: specimen supported by polyethylene glycol.
    Novák M; Jelínková A; Benda R
    Microsc Acta; 1977 Nov; 80(1):61-4. PubMed ID: 593159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of cytomatrix and nuclear matrix revealed by embedment-free electron microscopy.
    Gajkowska B; Cholewiński M; Gniadecki R
    Acta Neurobiol Exp (Wars); 2000; 60(2):147-58. PubMed ID: 10909170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The potential role of photoelectron microscopy in the analysis of biological surfaces.
    Griffith OH; Nadakavukaren KK; Jost PC
    Scan Electron Microsc; 1984; (Pt 2):633-44. PubMed ID: 6541368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastructure of ventral membranes of rat hepatocytes spread on type IV collagen.
    Nermut MV; Williams LD; Stamatoglou SC; Bissell DM
    Eur J Cell Biol; 1986 Oct; 42(1):35-44. PubMed ID: 3792341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrathin (1 nm) vertically shadowed platinum-carbon replicas for imaging individual molecules in freeze-etched biological DNA and material science metal and plastic specimens.
    Ruben GC
    J Electron Microsc Tech; 1989 Dec; 13(4):335-54. PubMed ID: 2809773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linkage of sub-membrane-cisterns with the cytoskeleton and the plasma membrane in cochlear outer hair cells.
    Raphael Y; Wróblewski R
    J Submicrosc Cytol; 1986 Oct; 18(4):731-7. PubMed ID: 3783797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ruffled border and attachment regions of the apposing membrane of resorbing osteoclasts as visualized from the cytoplasmic face of the membrane.
    Akisaka T; Yoshida H; Suzuki R
    J Electron Microsc (Tokyo); 2006 Apr; 55(2):53-61. PubMed ID: 16775216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.