These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

482 related articles for article (PubMed ID: 35060652)

  • 21. Extrusion-Based Bioprinting: Current Standards and Relevancy for Human-Sized Tissue Fabrication.
    Willson K; Ke D; Kengla C; Atala A; Murphy SV
    Methods Mol Biol; 2020; 2140():65-92. PubMed ID: 32207106
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration.
    Alcala-Orozco CR; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Acta Biomater; 2021 Sep; 132():188-216. PubMed ID: 33713862
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-Dimensional Bioprinting Strategies for Tissue Engineering.
    Zhang YS; Oklu R; Dokmeci MR; Khademhosseini A
    Cold Spring Harb Perspect Med; 2018 Feb; 8(2):. PubMed ID: 28289247
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Progress in 3D bioprinting technology for tissue/organ regenerative engineering.
    Matai I; Kaur G; Seyedsalehi A; McClinton A; Laurencin CT
    Biomaterials; 2020 Jan; 226():119536. PubMed ID: 31648135
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent advances in 3D bioprinting of musculoskeletal tissues.
    Potyondy T; Uquillas JA; Tebon PJ; Byambaa B; Hasan A; Tavafoghi M; Mary H; Aninwene GE; Pountos I; Khademhosseini A; Ashammakhi N
    Biofabrication; 2021 Mar; 13(2):. PubMed ID: 33166949
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D Bioprinting and Its Application to Military Medicine.
    Betz JF; Ho VB; Gaston JD
    Mil Med; 2020 Sep; 185(9-10):e1510-e1519. PubMed ID: 32514549
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Convergence of microengineering and cellular self-organization towards functional tissue manufacturing.
    Laurent J; Blin G; Chatelain F; Vanneaux V; Fuchs A; Larghero J; Théry M
    Nat Biomed Eng; 2017 Dec; 1(12):939-956. PubMed ID: 31015708
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solid Organ Bioprinting: Strategies to Achieve Organ Function.
    Jorgensen AM; Yoo JJ; Atala A
    Chem Rev; 2020 Oct; 120(19):11093-11127. PubMed ID: 32885956
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent advances in 3D printing: vascular network for tissue and organ regeneration.
    Hann SY; Cui H; Esworthy T; Miao S; Zhou X; Lee SJ; Fisher JP; Zhang LG
    Transl Res; 2019 Sep; 211():46-63. PubMed ID: 31004563
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Research Progress in the Field of Tumor Model Construction Using Bioprinting: A Review.
    Yu J; Zhang Y; Ran R; Kong Z; Zhao D; Zhao W; Yang Y; Gao L; Zhang Z
    Int J Nanomedicine; 2024; 19():6547-6575. PubMed ID: 38957180
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioprinting: From Tissue and Organ Development to
    Mota C; Camarero-Espinosa S; Baker MB; Wieringa P; Moroni L
    Chem Rev; 2020 Oct; 120(19):10547-10607. PubMed ID: 32407108
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Applications, advancements, and challenges of 3D bioprinting in organ transplantation.
    Huang G; Zhao Y; Chen D; Wei L; Hu Z; Li J; Zhou X; Yang B; Chen Z
    Biomater Sci; 2024 Mar; 12(6):1425-1448. PubMed ID: 38374788
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomaterial-based 3D bioprinting strategy for orthopedic tissue engineering.
    Chae S; Cho DW
    Acta Biomater; 2023 Jan; 156():4-20. PubMed ID: 35963520
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Organs by design: can bioprinting meet self-organization?
    Martin I; Malda J; Rivron NC
    Curr Opin Organ Transplant; 2019 Oct; 24(5):562-567. PubMed ID: 31348016
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D bioprinting of emulating homeostasis regulation for regenerative medicine applications.
    Wang Z; Xiang L; Lin F; Tang Y; Cui W
    J Control Release; 2023 Jan; 353():147-165. PubMed ID: 36423869
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of electroconductive biomaterials for engineering tissues by 3D printing and 3D bioprinting.
    Alizadeh P; Soltani M; Tutar R; Hoque Apu E; Maduka CV; Unluturk BD; Contag CH; Ashammakhi N
    Essays Biochem; 2021 Aug; 65(3):441-466. PubMed ID: 34296738
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D Bioprinting of Artificial Tissues: Construction of Biomimetic Microstructures.
    Luo Y; Lin X; Huang P
    Macromol Biosci; 2018 Jun; 18(6):e1800034. PubMed ID: 29687598
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D Bioprinting for Next-Generation Personalized Medicine.
    Lam EHY; Yu F; Zhu S; Wang Z
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047328
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Challenges in Three-Dimensional Printing of Bone Substitutes.
    Masaeli R; Zandsalimi K; Rasoulianboroujeni M; Tayebi L
    Tissue Eng Part B Rev; 2019 Oct; 25(5):387-397. PubMed ID: 31144596
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioprinting Approaches to Engineering Vascularized 3D Cardiac Tissues.
    Puluca N; Lee S; Doppler S; Münsterer A; Dreßen M; Krane M; Wu SM
    Curr Cardiol Rep; 2019 Jul; 21(9):90. PubMed ID: 31352612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.