These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35060670)

  • 1. Unravelling the role of GntR on the regulation of alkane hydroxylase AlkB
    Pan J; Wei F; Liu Y; Xu Y; Ma Y
    J Appl Microbiol; 2022 Apr; 132(4):2812-2822. PubMed ID: 35060670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidation of multiple alkane hydroxylase systems in biodegradation of crude oil n-alkane pollution by Pseudomonas aeruginosa DN1.
    Li YP; Pan JC; Ma YL
    J Appl Microbiol; 2020 Jan; 128(1):151-160. PubMed ID: 31566849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis.
    van Beilen JB; Marín MM; Smits TH; Röthlisberger M; Franchini AG; Witholt B; Rojo F
    Environ Microbiol; 2004 Mar; 6(3):264-73. PubMed ID: 14871210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. iTRAQ-based quantitative proteomic analysis of Pseudomonas aeruginosa SJTD-1: A global response to n-octadecane induced stress.
    Liu H; Sun WB; Liang RB; Huang L; Hou JL; Liu JH
    J Proteomics; 2015 Jun; 123():14-28. PubMed ID: 25845586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Analysis of Novel
    Xiang W; Hong S; Xue Y; Ma Y
    Microorganisms; 2023 Jun; 11(6):. PubMed ID: 37375039
    [No Abstract]   [Full Text] [Related]  

  • 6. Functional characterization of genes involved in alkane oxidation by Pseudomonas aeruginosa.
    Smits TH; Witholt B; van Beilen JB
    Antonie Van Leeuwenhoek; 2003; 84(3):193-200. PubMed ID: 14574114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple alkane hydroxylase systems in a marine alkane degrader, Alcanivorax dieselolei B-5.
    Liu C; Wang W; Wu Y; Zhou Z; Lai Q; Shao Z
    Environ Microbiol; 2011 May; 13(5):1168-78. PubMed ID: 21261799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alkane biodegradation in Pseudomonas aeruginosa strains isolated from a polluted zone: identification of alkB and alkB-related genes.
    Belhaj A; Desnoues N; Elmerich C
    Res Microbiol; 2002; 153(6):339-44. PubMed ID: 12234007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic and stress responses of Acinetobacter oleivorans DR1 during long-chain alkane degradation.
    Park C; Shin B; Jung J; Lee Y; Park W
    Microb Biotechnol; 2017 Nov; 10(6):1809-1823. PubMed ID: 28857443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531.
    Whyte LG; Smits TH; Labbé D; Witholt B; Greer CW; van Beilen JB
    Appl Environ Microbiol; 2002 Dec; 68(12):5933-42. PubMed ID: 12450813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LcaR: a regulatory switch from Pseudomonas aeruginosa for bioengineering alkane degrading bacteria.
    Hemamali EH; Weerasinghe LP; Tanaka H; Kurisu G; Perera IC
    Biodegradation; 2022 Apr; 33(2):117-133. PubMed ID: 34989928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative proteomics analysis of proteins involved in alkane uptake comparing the profiling of Pseudomonas aeruginosa SJTD-1 in response to n-octadecane and n-hexadecane.
    Zhou X; Xing X; Hou J; Liu J
    PLoS One; 2017; 12(6):e0179842. PubMed ID: 28662172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CrgA Protein Represses AlkB2 Monooxygenase and Regulates the Degradation of Medium-to-Long-Chain
    Ji N; Wang X; Yin C; Peng W; Liang R
    Front Microbiol; 2019; 10():400. PubMed ID: 30915046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential expression of the components of the two alkane hydroxylases from Pseudomonas aeruginosa.
    Marín MM; Yuste L; Rojo F
    J Bacteriol; 2003 May; 185(10):3232-7. PubMed ID: 12730186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and functional analysis of alkB genes in Alcanivorax borkumensis SK2.
    Hara A; Baik SH; Syutsubo K; Misawa N; Smits TH; van Beilen JB; Harayama S
    Environ Microbiol; 2004 Mar; 6(3):191-7. PubMed ID: 14871203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the medium- and long-chain n-alkanes degrading Pseudomonas aeruginosa strain SJTD-1 and its alkane hydroxylase genes.
    Liu H; Xu J; Liang R; Liu J
    PLoS One; 2014; 9(8):e105506. PubMed ID: 25165808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of GntR as regulator of the glucose metabolism in Pseudomonas aeruginosa.
    Daddaoua A; Corral-Lugo A; Ramos JL; Krell T
    Environ Microbiol; 2017 Sep; 19(9):3721-3733. PubMed ID: 28752954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptomic Analyses Elucidate Adaptive Differences of Closely Related Strains of Pseudomonas aeruginosa in Fuel.
    Gunasekera TS; Bowen LL; Zhou CE; Howard-Byerly SC; Foley WS; Striebich RC; Dugan LC; Ruiz ON
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28314727
    [No Abstract]   [Full Text] [Related]  

  • 19. A Novel XRE-Type Regulator Mediates Phage Lytic Development and Multiple Host Metabolic Processes in Pseudomonas aeruginosa.
    Long X; Wang X; Mao D; Wu W; Luo Y
    Microbiol Spectr; 2022 Dec; 10(6):e0351122. PubMed ID: 36445133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. McbG, a LysR Family Transcriptional Regulator, Activates the
    Ke Z; Zhou Y; Jiang W; Zhang M; Wang H; Ren Y; Qiu J; Cheng M; Hong Q
    Appl Environ Microbiol; 2021 Apr; 87(9):. PubMed ID: 33579686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.