These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 35060771)
1. Comparison of Artificial Intelligence-Based Machine Learning Classifiers for Early Detection of Keratoconus. Mohammadpour M; Heidari Z; Hashemi H; Yaseri M; Fotouhi A Eur J Ophthalmol; 2022 May; 32(3):1352-1360. PubMed ID: 35060771 [TBL] [Abstract][Full Text] [Related]
2. Early diagnosis of subclinical keratoconus by wavefront parameters using Scheimpflug, Placido and Hartmann-Shack based devices. Heidari Z; Mohammadpour M; Hashemi H; Jafarzadehpur E; Moghaddasi A; Yaseri M; Fotouhi A Int Ophthalmol; 2020 Jul; 40(7):1659-1671. PubMed ID: 32219617 [TBL] [Abstract][Full Text] [Related]
3. Analysis of the diagnostic accuracy of Belin/Ambrósio Enhanced Ectasia and Corvis ST parameters for subclinical keratoconus. Song Y; Feng Y; Qu M; Ma Q; Tian H; Li D; He R Int Ophthalmol; 2023 May; 43(5):1465-1475. PubMed ID: 36255612 [TBL] [Abstract][Full Text] [Related]
4. [Comparison of the specificity and sensitivity of various instrument-guided keratoconus indices and classifiers]. Spira C; Grigoryan A; Szentmáry N; Seitz B; Langenbucher A; Eppig T Ophthalmologe; 2015 Apr; 112(4):353-8. PubMed ID: 25609499 [TBL] [Abstract][Full Text] [Related]
5. Enhanced Tomographic Assessment to Detect Corneal Ectasia Based on Artificial Intelligence. Lopes BT; Ramos IC; Salomão MQ; Guerra FP; Schallhorn SC; Schallhorn JM; Vinciguerra R; Vinciguerra P; Price FW; Price MO; Reinstein DZ; Archer TJ; Belin MW; Machado AP; Ambrósio R Am J Ophthalmol; 2018 Nov; 195():223-232. PubMed ID: 30098348 [TBL] [Abstract][Full Text] [Related]
6. Analysis of OPD-Scan and Pentacam Parameters for Early Keratoconus Detection. Donoso R; Rodríguez Á; Esteffan K; Lagos C; Aránguiz D; Hernández N Am J Ophthalmol; 2021 Jun; 226():235-242. PubMed ID: 33529586 [TBL] [Abstract][Full Text] [Related]
7. Keratoconus Screening Indices and Their Diagnostic Ability to Distinguish Normal From Ectatic Corneas. Shetty R; Rao H; Khamar P; Sainani K; Vunnava K; Jayadev C; Kaweri L Am J Ophthalmol; 2017 Sep; 181():140-148. PubMed ID: 28687218 [TBL] [Abstract][Full Text] [Related]
8. Early Diagnosis of Keratoconus in Chinese Myopic Eyes by Combining Corvis ST with Pentacam. Zhang M; Zhang F; Li Y; Song Y; Wang Z Curr Eye Res; 2020 Feb; 45(2):118-123. PubMed ID: 31466466 [No Abstract] [Full Text] [Related]
9. Corneal layer thickness in keratoconus using optical coherence tomography. Heidari Z; Mohammadpour M; Hajizadeh F; Fotouhi A; Hashemi H Clin Exp Optom; 2024 Jan; 107(1):32-39. PubMed ID: 37121670 [TBL] [Abstract][Full Text] [Related]
11. New artificial intelligence index based on Scheimpflug corneal tomography to distinguish subclinical keratoconus from healthy corneas. Almeida GC; Guido RC; Balarin Silva HM; Brandão CC; de Mattos LC; Lopes BT; Machado AP; Ambrósio R J Cataract Refract Surg; 2022 Oct; 48(10):1168-1174. PubMed ID: 35333829 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of corneal topography and tomography in fellow eyes of unilateral keratoconus patients for early detection of subclinical keratoconus. Thulasidas M; Teotia P Indian J Ophthalmol; 2020 Nov; 68(11):2415-2420. PubMed ID: 33120630 [TBL] [Abstract][Full Text] [Related]
13. Integration of Scheimpflug-Based Corneal Tomography and Biomechanical Assessments for Enhancing Ectasia Detection. Ambrósio R; Lopes BT; Faria-Correia F; Salomão MQ; Bühren J; Roberts CJ; Elsheikh A; Vinciguerra R; Vinciguerra P J Refract Surg; 2017 Jul; 33(7):434-443. PubMed ID: 28681902 [TBL] [Abstract][Full Text] [Related]
14. [Keratoconus detection and classification from parameters of the Corvis®ST : A study based on algorithms of machine learning]. Langenbucher A; Häfner L; Eppig T; Seitz B; Szentmáry N; Flockerzi E Ophthalmologe; 2021 Jul; 118(7):697-706. PubMed ID: 32970190 [TBL] [Abstract][Full Text] [Related]
15. The false positive rates for detecting keratoconus and potential ectatic corneal conditions when evaluating astigmatic eyes with Scheimpflug Technology. Henriquez MA; Hadid M; Moctezuma C; Izquierdo L; Binder PS Eur J Ophthalmol; 2022 Sep; 32(5):2532-2546. PubMed ID: 35313744 [TBL] [Abstract][Full Text] [Related]
16. Comparison of different corneal imaging modalities using artificial intelligence for diagnosis of keratoconus: a systematic review and meta-analysis. Hashemi H; Doroodgar F; Niazi S; Khabazkhoob M; Heidari Z Graefes Arch Clin Exp Ophthalmol; 2024 Apr; 262(4):1017-1039. PubMed ID: 37418053 [TBL] [Abstract][Full Text] [Related]
17. Comparative analysis of the morphological and biomechanical properties of normal cornea and keratoconus at different stages. Wu Y; Guo LL; Tian L; Xu ZQ; Li Q; Hu J; Huang YF; Wang LQ Int Ophthalmol; 2021 Nov; 41(11):3699-3711. PubMed ID: 34232432 [TBL] [Abstract][Full Text] [Related]
18. Pentacam Scheimpflug tomography findings in topographically normal patients and subclinical keratoconus cases. Ruiseñor Vázquez PR; Galletti JD; Minguez N; Delrivo M; Fuentes Bonthoux F; Pförtner T; Galletti JG Am J Ophthalmol; 2014 Jul; 158(1):32-40.e2. PubMed ID: 24709808 [TBL] [Abstract][Full Text] [Related]
19. [Characteristics of corneal topography in parents of keratoconus patients]. Li J; Jing LL; Du XL Zhonghua Yan Ke Za Zhi; 2020 Jun; 56(6):456-464. PubMed ID: 32842328 [No Abstract] [Full Text] [Related]
20. Accuracy of machine learning classifiers using bilateral data from a Scheimpflug camera for identifying eyes with preclinical signs of keratoconus. Kovács I; Miháltz K; Kránitz K; Juhász É; Takács Á; Dienes L; Gergely R; Nagy ZZ J Cataract Refract Surg; 2016 Feb; 42(2):275-83. PubMed ID: 27026453 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]