BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 35061118)

  • 1. Shear wave speed measurement bias in a viscoelastic phantom across six ultrasound elastography systems: a comparative study with transient elastography and magnetic resonance elastography.
    Kishimoto R; Suga M; Usumura M; Iijima H; Yoshida M; Hachiya H; Shiina T; Yamakawa M; Konno K; Obata T; Yamaguchi T
    J Med Ultrason (2001); 2022 Apr; 49(2):143-152. PubMed ID: 35061118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiological Society of North America/Quantitative Imaging Biomarker Alliance Shear Wave Speed Bias Quantification in Elastic and Viscoelastic Phantoms.
    Palmeri ML; Milkowski A; Barr R; Carson P; Couade M; Chen J; Chen S; Dhyani M; Ehman R; Garra B; Gee A; Guenette G; Hah Z; Lynch T; Macdonald M; Managuli R; Miette V; Nightingale KR; Obuchowski N; Rouze NC; Morris DC; Fielding S; Deng Y; Chan D; Choudhury K; Yang S; Samir AE; Shamdasani V; Urban M; Wear K; Xie H; Ozturk A; Qiang B; Song P; McAleavey S; Rosenzweig S; Wang M; Okamura Y; McLaughlin G; Chen Y; Napolitano D; Carlson L; Erpelding T; Hall TJ
    J Ultrasound Med; 2021 Mar; 40(3):569-581. PubMed ID: 33410183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Longitudinal stability of a multimodal visco-elastic polyacrylamide gel phantom for magnetic resonance and ultrasound shear-wave elastography.
    Usumura M; Kishimoto R; Ishii K; Hotta E; Kershaw J; Higashi T; Obata T; Suga M
    PLoS One; 2021; 16(5):e0250667. PubMed ID: 34019551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sources of Variability in Shear Wave Speed and Dispersion Quantification with Ultrasound Elastography: A Phantom Study.
    Korta Martiartu N; Nambiar S; Nascimento Kirchner I; Paverd C; Cester D; Frauenfelder T; Ruby L; Rominger MB
    Ultrasound Med Biol; 2021 Dec; 47(12):3529-3542. PubMed ID: 34548187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage.
    Piscaglia F; Salvatore V; Mulazzani L; Cantisani V; Schiavone C
    Ultraschall Med; 2016 Feb; 37(1):1-5. PubMed ID: 26871407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring shear-wave speed with point shear-wave elastography and MR elastography: a phantom study.
    Kishimoto R; Suga M; Koyama A; Omatsu T; Tachibana Y; Ebner DK; Obata T
    BMJ Open; 2017 Jan; 7(1):e013925. PubMed ID: 28057657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repeatability and Agreement of Shear Wave Speed Measurements in Phantoms and Human Livers Across 6 Ultrasound 2-Dimensional Shear Wave Elastography Systems.
    Gilligan LA; Trout AT; Bennett P; Dillman JR
    Invest Radiol; 2020 Apr; 55(4):191-199. PubMed ID: 31977604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid-Liver Phantom: Mimicking the Viscoelastic Dispersion of Human Liver for Ultrasound- and MRI-Based Elastography.
    Morr AS; Herthum H; Schrank F; Görner S; Anders MS; Lerchbaumer M; Müller HP; Fischer T; Jenderka KV; Hansen HHG; Janmey PA; Braun J; Sack I; Tzschätzsch H
    Invest Radiol; 2022 Aug; 57(8):502-509. PubMed ID: 35195086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance evaluation of commercial and non-commercial shear wave elastography implementations for vascular applications.
    Pruijssen JT; Schreuder FHBM; Wilbers J; Kaanders JHAM; de Korte CL; Hansen HHG
    Ultrasonics; 2024 May; 140():107312. PubMed ID: 38599075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superficial ultrasound shear wave speed measurements in soft and hard elasticity phantoms: repeatability and reproducibility using two ultrasound systems.
    Dillman JR; Chen S; Davenport MS; Zhao H; Urban MW; Song P; Watcharotone K; Carson PL
    Pediatr Radiol; 2015 Mar; 45(3):376-85. PubMed ID: 25249389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intra- and inter-operator reproducibility of US point shear-wave elastography in various organs: evaluation in phantoms and healthy volunteers.
    Kishimoto R; Kikuchi K; Koyama A; Kershaw J; Omatsu T; Tachibana Y; Suga M; Obata T
    Eur Radiol; 2019 Nov; 29(11):5999-6008. PubMed ID: 31089847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variability of shear wave velocity using different frequencies in acoustic radiation force impulse (ARFI) elastography: a phantom and normal liver study.
    Chang S; Kim MJ; Kim J; Lee MJ
    Ultraschall Med; 2013 Jun; 34(3):260-5. PubMed ID: 23023455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stiffness change of the supraspinatus muscle can be detected by magnetic resonance elastography.
    Koga A; Itoigawa Y; Suga M; Morikawa D; Uehara H; Maruyama Y; Kaneko K
    Magn Reson Imaging; 2021 Jul; 80():9-13. PubMed ID: 33819499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of shear wave speed dispersion in the placenta by transient elastography: A preliminary ex vivo study.
    Simon EG; Callé S; Perrotin F; Remenieras JP
    PLoS One; 2018; 13(4):e0194309. PubMed ID: 29621270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interconversion of elasticity measurements between two-dimensional shear wave elastography and transient elastography.
    Kim YY; Kim MJ; Shin HJ; Yoon H; Kim HY; Lee MJ
    Med Ultrason; 2018 May; 20(2):127-133. PubMed ID: 29730676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Measurement Depth and Acquisition Parameters on Shear Wave Speed and Shear Wave Dispersion in Certified Phantoms Using a Canon Aplio Clinical Ultrasound Scanner.
    Obrist A; Ruby L; Martin A; Frauenfelder T; Rominger M; Paverd C
    Ultrasound Med Biol; 2023 Aug; 49(8):1742-1759. PubMed ID: 37156674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of 2D Shear Wave Elastography, Transient Elastography, and MR Elastography for the Diagnosis of Fibrosis in Patients With Nonalcoholic Fatty Liver Disease.
    Furlan A; Tublin ME; Yu L; Chopra KB; Lippello A; Behari J
    AJR Am J Roentgenol; 2020 Jan; 214(1):W20-W26. PubMed ID: 31714842
    [No Abstract]   [Full Text] [Related]  

  • 18. Comparative diagnostic performance of ultrasound shear wave elastography and magnetic resonance elastography for classifying fibrosis stage in adults with biopsy-proven nonalcoholic fatty liver disease.
    Zhang YN; Fowler KJ; Boehringer AS; Montes V; Schlein AN; Covarrubias Y; Wolfson T; Hong CW; Valasek MA; Andre MP; Loomba R; Sirlin CB
    Eur Radiol; 2022 Apr; 32(4):2457-2469. PubMed ID: 34854929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient shear wave elastography using transient acoustic radiation force excitations and MR displacement encoding.
    Hofstetter LW; Odéen H; Bolster BD; Mueller A; Christensen DA; Payne A; Parker DL
    Magn Reson Med; 2019 May; 81(5):3153-3167. PubMed ID: 30663806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of five viscoelastic models for estimating viscoelastic parameters using ultrasound shear wave elastography.
    Zhou B; Zhang X
    J Mech Behav Biomed Mater; 2018 Sep; 85():109-116. PubMed ID: 29879581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.