These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35061355)

  • 21. Toward the construction of a technology platform for chemicals production from methanol: D-lactic acid production from methanol by an engineered yeast Pichia pastoris.
    Yamada R; Ogura K; Kimoto Y; Ogino H
    World J Microbiol Biotechnol; 2019 Feb; 35(2):37. PubMed ID: 30715602
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of synthetic biology tools to engineer
    Gao J; Jiang L; Lian J
    Synth Syst Biotechnol; 2021 Jun; 6(2):110-119. PubMed ID: 33997361
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A CRISPR/Cas9-based visual toolkit enabling multiplex integration at specific genomic loci in
    Li Y; Li C; Fu Y; Zhang Q; Ma J; Zhou J; Li J; Du G; Liu S
    Synth Syst Biotechnol; 2024 Jun; 9(2):209-216. PubMed ID: 38385153
    [No Abstract]   [Full Text] [Related]  

  • 24. Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production.
    Daly R; Hearn MT
    J Mol Recognit; 2005; 18(2):119-38. PubMed ID: 15565717
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR-Cpf1-Assisted Multiplex Genome Editing and Transcriptional Repression in Streptomyces.
    Li L; Wei K; Zheng G; Liu X; Chen S; Jiang W; Lu Y
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980561
    [No Abstract]   [Full Text] [Related]  

  • 26. Metabolic engineering of Pichia pastoris.
    Peña DA; Gasser B; Zanghellini J; Steiger MG; Mattanovich D
    Metab Eng; 2018 Nov; 50():2-15. PubMed ID: 29704654
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPRi repression of nonhomologous end-joining for enhanced genome engineering via homologous recombination in Yarrowia lipolytica.
    Schwartz C; Frogue K; Ramesh A; Misa J; Wheeldon I
    Biotechnol Bioeng; 2017 Dec; 114(12):2896-2906. PubMed ID: 28832943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmid-Based Gene Knockout Strategy with Subsequent Marker Recycling in Pichia pastoris.
    Kobalter S; Radkohl A; Schwab H; Emmerstorfer-Augustin A; Pichler H
    Methods Mol Biol; 2022; 2513():135-151. PubMed ID: 35781204
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineered CRISPR/Cas9 system for multiplex genome engineering of polyploid industrial yeast strains.
    Lian J; Bao Z; Hu S; Zhao H
    Biotechnol Bioeng; 2018 Jun; 115(6):1630-1635. PubMed ID: 29460422
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus
    Katayama T; Nakamura H; Zhang Y; Pascal A; Fujii W; Maruyama JI
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478227
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthetic biology approaches for chromosomal integration of genes and pathways in industrial microbial systems.
    Li L; Liu X; Wei K; Lu Y; Jiang W
    Biotechnol Adv; 2019; 37(5):730-745. PubMed ID: 30951810
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
    Shen J; Zhou J; Chen GQ; Xiu ZL
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899105
    [No Abstract]   [Full Text] [Related]  

  • 33. Multiplexed site-specific genome engineering in
    Liu K; Lin GH; Liu K; Liu YJ; Tao XY; Gao B; Zhao M; Wei DZ; Wang FQ
    Synth Syst Biotechnol; 2022 Sep; 7(3):1002-1011. PubMed ID: 35782483
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Methylotrophic yeast Pichia pastoris as a chassis organism for polyketide synthesis via the full citrinin biosynthetic pathway.
    Xue Y; Kong C; Shen W; Bai C; Ren Y; Zhou X; Zhang Y; Cai M
    J Biotechnol; 2017 Jan; 242():64-72. PubMed ID: 27913218
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances.
    Wagner JM; Alper HS
    Fungal Genet Biol; 2016 Apr; 89():126-136. PubMed ID: 26701310
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integration event induced changes in recombinant protein productivity in Pichia pastoris discovered by whole genome sequencing and derived vector optimization.
    Schwarzhans JP; Wibberg D; Winkler A; Luttermann T; Kalinowski J; Friehs K
    Microb Cell Fact; 2016 May; 15():84. PubMed ID: 27206580
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving the homologous recombination efficiency of
    Ji Q; Mai J; Ding Y; Wei Y; Ledesma-Amaro R; Ji XJ
    Metab Eng Commun; 2020 Dec; 11():e00152. PubMed ID: 33294367
    [TBL] [Abstract][Full Text] [Related]  

  • 38. One-Step
    Nishi T; Ito Y; Nakamura Y; Yamaji T; Hashiba N; Tamai M; Yasohara Y; Ishii J; Kondo A
    ACS Synth Biol; 2022 Feb; 11(2):644-654. PubMed ID: 35094517
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient generation of targeted and controlled mutational events in porcine cells using nuclease-directed homologous recombination.
    Butler JR; Santos RMN; Martens GR; Ladowski JM; Wang ZY; Li P; Tector M; Tector AJ
    J Surg Res; 2017 May; 212():238-245. PubMed ID: 28550913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient gene disruption by posttransformational directed internal homologous recombination in Pichia pastoris.
    Jiao L; Zhou Q; Yan Y
    Anal Biochem; 2019 Jul; 576():1-4. PubMed ID: 30958998
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.