These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35061378)

  • 1. Pathways for Electron Transfer at MgO-Water Interfaces from
    Ding Z; Goldsmith ZK; Selloni A
    J Am Chem Soc; 2022 Feb; 144(4):2002-2009. PubMed ID: 35061378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong electric fields at a prototypical oxide/water interface probed by ab initio molecular dynamics: MgO(001).
    Laporte S; Finocchi F; Paulatto L; Blanchard M; Balan E; Guyot F; Saitta AM
    Phys Chem Chem Phys; 2015 Aug; 17(31):20382-90. PubMed ID: 26193818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics.
    Marsalek O; Uhlig F; VandeVondele J; Jungwirth P
    Acc Chem Res; 2012 Jan; 45(1):23-32. PubMed ID: 21899274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating Simple
    Park SJ; Schwartz BJ
    J Phys Chem B; 2020 Oct; 124(43):9592-9603. PubMed ID: 33078930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical study of fcc-metal/MgO(110) interfacial potentials.
    Chen J; Chen N
    J Phys Condens Matter; 2010 Jun; 22(21):215001. PubMed ID: 21393717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density-Functional Theory Molecular Dynamics Simulations and Experimental Characterization of a-Al₂O₃/SiGe Interfaces.
    Chagarov E; Sardashti K; Kaufman-Osborn T; Madisetti S; Oktyabrsky S; Sahu B; Kummel A
    ACS Appl Mater Interfaces; 2015 Dec; 7(47):26275-83. PubMed ID: 26575590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic scale characterization of interfacial water near an oxide surface using molecular dynamics simulations.
    Deshmukh SA; Sankaranarayanan SK
    Phys Chem Chem Phys; 2012 Nov; 14(44):15593-605. PubMed ID: 23076434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A molecular density functional theory approach to electron transfer reactions.
    Jeanmairet G; Rotenberg B; Levesque M; Borgis D; Salanne M
    Chem Sci; 2019 Feb; 10(7):2130-2143. PubMed ID: 30881637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton-Coupled Defects Impact O-H Bond Dissociation Free Energies on Metal Oxide Surfaces.
    Warburton RE; Mayer JM; Hammes-Schiffer S
    J Phys Chem Lett; 2021 Oct; 12(40):9761-9767. PubMed ID: 34595925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial effects on the band edges of functionalized si surfaces in liquid water.
    Pham TA; Lee D; Schwegler E; Galli G
    J Am Chem Soc; 2014 Dec; 136(49):17071-7. PubMed ID: 25402590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast dynamics of solvated electrons at anatase TiO
    Sun H; Zheng Q; Lu W; Zhao J
    J Phys Condens Matter; 2019 Mar; 31(11):114004. PubMed ID: 30625440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydration structure of flat and stepped MgO surfaces.
    Ding Z; Selloni A
    J Chem Phys; 2021 Mar; 154(11):114708. PubMed ID: 33752356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic properties of doped and defective semiconducting oxides from hybrid density functional calculations.
    Di Valentin C; Pacchioni G
    Acc Chem Res; 2014 Nov; 47(11):3233-41. PubMed ID: 24828320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning Solvated Electrons by Polar-Nonpolar Oxide Heterostructure.
    Wang Y; Guo H; Zheng Q; Saidi WA; Zhao J
    J Phys Chem Lett; 2018 Jun; 9(11):3049-3056. PubMed ID: 29767527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning in Computational Surface Science and Catalysis: Case Studies on Water and Metal-Oxide Interfaces.
    Li X; Paier W; Paier J
    Front Chem; 2020; 8():601029. PubMed ID: 33425857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrated Electron Transfer to Nucleobases in Aqueous Solutions Revealed by Ab Initio Molecular Dynamics Simulations.
    Zhao J; Wang M; Fu A; Yang H; Bu Y
    Chemphyschem; 2015 Aug; 16(11):2348-56. PubMed ID: 26017360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What Coordinate Best Describes the Affinity of the Hydrated Excess Proton for the Air-Water Interface?
    Li Z; Li C; Wang Z; Voth GA
    J Phys Chem B; 2020 Jun; 124(24):5039-5046. PubMed ID: 32426982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio and classical molecular dynamics studies of the structural and dynamical behavior of water near a hydrophobic graphene sheet.
    Rana MK; Chandra A
    J Chem Phys; 2013 May; 138(20):204702. PubMed ID: 23742495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excess electron relaxation dynamics at water/air interfaces.
    Madarász A; Rossky PJ; Turi L
    J Chem Phys; 2007 Jun; 126(23):234707. PubMed ID: 17600435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.