These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35061388)

  • 1. Ultrasmall Magneto-chiral Cobalt Hydroxide Nanoparticles Enable Dynamic Detection of Reactive Oxygen Species
    Li C; Li S; Zhao J; Sun M; Wang W; Lu M; Qu A; Hao C; Chen C; Xu C; Kuang H; Xu L
    J Am Chem Soc; 2022 Feb; 144(4):1580-1588. PubMed ID: 35061388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chiral MoSe
    Cao B; Zhang H; Sun M; Xu C; Kuang H; Xu L
    Adv Mater; 2024 Mar; 36(10):e2208037. PubMed ID: 36528789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tri-mode Responses to Reactive Oxygen Species In Vivo by Chiral Vanadium-Based Nanoparticles.
    Yu G; Kuang H; Xu C; Sun M; Hao C
    Anal Chem; 2024 Apr; 96(14):5677-5685. PubMed ID: 38533607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chiral Core-Shell Upconversion Nanoparticle@MOF Nanoassemblies for Quantification and Bioimaging of Reactive Oxygen Species
    Hao C; Wu X; Sun M; Zhang H; Yuan A; Xu L; Xu C; Kuang H
    J Am Chem Soc; 2019 Dec; 141(49):19373-19378. PubMed ID: 31711292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiral Cu
    Li S; Sun M; Hao C; Qu A; Wu X; Xu L; Xu C; Kuang H
    Angew Chem Int Ed Engl; 2020 Aug; 59(33):13915-13922. PubMed ID: 32400008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitive and Selective Dual-Mode Responses to Reactive Oxygen Species by Chiral Manganese Dioxide Nanoparticles for Antiaging Skin.
    Qu A; Chen Q; Sun M; Xu L; Hao C; Xu C; Kuang H
    Adv Mater; 2024 Feb; 36(5):e2308469. PubMed ID: 37766572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic Reactive Oxygen Species Nanoreactor for Switchable Magnetic Resonance Imaging Guided Cancer Therapy Based on pH-Sensitive Fe
    Yu J; Zhao F; Gao W; Yang X; Ju Y; Zhao L; Guo W; Xie J; Liang XJ; Tao X; Li J; Ying Y; Li W; Zheng J; Qiao L; Xiong S; Mou X; Che S; Hou Y
    ACS Nano; 2019 Sep; 13(9):10002-10014. PubMed ID: 31433945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of the HIF pathway in cobalt nanoparticle-induced cytotoxicity and inflammation in human macrophages.
    Nyga A; Hart A; Tetley TD
    Nanotoxicology; 2015; 9(7):905-17. PubMed ID: 25676618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chiral ZnO nanoparticles for detection of dopamine.
    Lin J; Huang B; Dai Y; Wei J; Chen Y
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():739-745. PubMed ID: 30274107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cobalt iron oxide nanoparticles induce cytotoxicity and regulate the apoptotic genes through ROS in human liver cells (HepG2).
    Ahamed M; Akhtar MJ; Khan MAM; Alhadlaq HA; Alshamsan A
    Colloids Surf B Biointerfaces; 2016 Dec; 148():665-673. PubMed ID: 27701048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ synthesis of ultrafine Cu
    Ling P; Sun X; Pei Yang XG; Gao F
    Talanta; 2022 Dec; 250():123736. PubMed ID: 35858531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative stress contributes to cobalt oxide nanoparticles-induced cytotoxicity and DNA damage in human hepatocarcinoma cells.
    Alarifi S; Ali D; Y AO; Ahamed M; Siddiqui MA; Al-Khedhairy AA
    Int J Nanomedicine; 2013; 8():189-199. PubMed ID: 23326189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicity of cobalt oxide nanoparticles to normal cells; an in vitro and in vivo study.
    Chattopadhyay S; Dash SK; Tripathy S; Das B; Mandal D; Pramanik P; Roy S
    Chem Biol Interact; 2015 Jan; 226():58-71. PubMed ID: 25437709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Six-Pointed Star Chiral Cobalt Superstructures with Strong Antibacterial Activity.
    Wang G; Hao C; Chen C; Kuang H; Xu C; Xu L
    Small; 2022 Sep; 18(39):e2204219. PubMed ID: 36038354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the toxicity of ZnO nanoparticles to Chlorella vulgaris by use of the chiral perturbation approach.
    Zhou H; Wang X; Zhou Y; Yao H; Ahmad F
    Anal Bioanal Chem; 2014 Jun; 406(15):3689-95. PubMed ID: 24752692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell stress response to two different types of polymer coated cobalt ferrite nanoparticles.
    Lojk J; Strojan K; Miš K; Bregar BV; Hafner Bratkovič I; Bizjak M; Pirkmajer S; Pavlin M
    Toxicol Lett; 2017 Mar; 270():108-118. PubMed ID: 28223195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic Enhancement of Chiroptical Property in Enantiomers Using a Helical Array of Magnetoplasmonic Nanoparticles for Ultrasensitive Chiral Recognition.
    Gwak J; Park SJ; Choi HY; Lee JH; Jeong KJ; Lee D; Tran VT; Son KS; Lee J
    ACS Appl Mater Interfaces; 2021 Oct; 13(39):46886-46893. PubMed ID: 34570473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protonation and reactivity towards carbon dioxide of the mononuclear tetrahedral zinc and cobalt hydroxide complexes, [Tp(Bu)t(,Me)]ZnOH and [Tp(Bu)t(,Me)]CoOH: comparison of the reactivity of the metal hydroxide function in synthetic analogues of carbonic anhydrase.
    Bergquist C; Fillebeen T; Morlok MM; Parkin G
    J Am Chem Soc; 2003 May; 125(20):6189-99. PubMed ID: 12785851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porphyrin functionalized Co(OH)
    Zhao X; Wu K; Lyu H; Zhang X; Liu Z; Fan G; Zhang X; Zhu X; Liu Q
    Analyst; 2019 Sep; 144(17):5284-5291. PubMed ID: 31372627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-precipitation synthesis and characterization of Co doped SnO
    Nasir Z; Shakir M; Wahab R; Shoeb M; Alam P; Khan RH; Mobin M; Lutfullah
    Int J Biol Macromol; 2017 Jan; 94(Pt A):554-565. PubMed ID: 27771412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.