These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35061437)

  • 1. Cage Length Controls the Nonmonotonic Dynamics of Active Glassy Matter.
    Debets VE; de Wit XM; Janssen LMC
    Phys Rev Lett; 2021 Dec; 127(27):278002. PubMed ID: 35061437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active glassy dynamics is unaffected by the microscopic details of self-propulsion.
    Debets VE; Janssen LMC
    J Chem Phys; 2022 Dec; 157(22):224902. PubMed ID: 36546821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nonequilibrium glassy dynamics of self-propelled particles.
    Flenner E; Szamel G; Berthier L
    Soft Matter; 2016 Sep; 12(34):7136-49. PubMed ID: 27499055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mode-coupling theory for mixtures of athermal self-propelled particles.
    Debets VE; Janssen LMC
    J Chem Phys; 2023 Jul; 159(1):. PubMed ID: 37403858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active matter: Quantifying the departure from equilibrium.
    Flenner E; Szamel G
    Phys Rev E; 2020 Aug; 102(2-1):022607. PubMed ID: 32942354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical mechanics of active Ornstein-Uhlenbeck particles.
    Martin D; O'Byrne J; Cates ME; Fodor É; Nardini C; Tailleur J; van Wijland F
    Phys Rev E; 2021 Mar; 103(3-1):032607. PubMed ID: 33862678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonmonotonic behavior in dense assemblies of active colloids.
    Klongvessa N; Ginot F; Ybert C; Cottin-Bizonne C; Leocmach M
    Phys Rev E; 2019 Dec; 100(6-1):062603. PubMed ID: 31962398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "Dense diffusion" in colloidal glasses: short-ranged long-time self-diffusion as a mechanistic model for relaxation dynamics.
    Wang JG; Li Q; Peng X; McKenna GB; Zia RN
    Soft Matter; 2020 Aug; 16(31):7370-7389. PubMed ID: 32696798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The parental active model: A unifying stochastic description of self-propulsion.
    Caprini L; Sprenger AR; Löwen H; Wittmann R
    J Chem Phys; 2022 Feb; 156(7):071102. PubMed ID: 35183083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mode coupling theory for nonequilibrium glassy dynamics of thermal self-propelled particles.
    Feng M; Hou Z
    Soft Matter; 2017 Jun; 13(25):4464-4481. PubMed ID: 28580481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active Ornstein-Uhlenbeck particles.
    Bonilla LL
    Phys Rev E; 2019 Aug; 100(2-1):022601. PubMed ID: 31574714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamical anomalies and structural features of active Brownian particles characterized by two repulsive length scales.
    Martín-Roca J; Martinez R; Martínez-Pedrero F; Ramírez J; Valeriani C
    J Chem Phys; 2022 Apr; 156(16):164502. PubMed ID: 35490027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mode-coupling theory for active Brownian particles.
    Liluashvili A; Ónody J; Voigtmann T
    Phys Rev E; 2017 Dec; 96(6-1):062608. PubMed ID: 29347410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aging or DEAD: Origin of the non-monotonic response to weak self-propulsion in active glasses.
    Klongvessa N; Ybert C; Cottin-Bizonne C; Kawasaki T; Leocmach M
    J Chem Phys; 2022 Apr; 156(15):154509. PubMed ID: 35459302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple Types of Aging in Active Glasses.
    Mandal R; Sollich P
    Phys Rev Lett; 2020 Nov; 125(21):218001. PubMed ID: 33274976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-particle dynamics near the glass transition of a metallic glass.
    Lü YJ; Wang WH
    Phys Rev E; 2016 Dec; 94(6-1):062611. PubMed ID: 28085459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aging and rejuvenation of active matter under topological constraints.
    Janssen LMC; Kaiser A; Löwen H
    Sci Rep; 2017 Jul; 7(1):5667. PubMed ID: 28720777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mode-coupling theory for tagged-particle motion of active Brownian particles.
    Reichert J; Mandal S; Voigtmann T
    Phys Rev E; 2021 Oct; 104(4-1):044608. PubMed ID: 34781467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rotational inertia-induced glassy transition in chiral particle systems.
    Ai BQ; Guo RX; Zeng CH; He YF
    Phys Rev E; 2024 Jun; 109(6-1):064902. PubMed ID: 39020947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brownian motion in non-equilibrium systems and the Ornstein-Uhlenbeck stochastic process.
    Donado F; Moctezuma RE; López-Flores L; Medina-Noyola M; Arauz-Lara JL
    Sci Rep; 2017 Oct; 7(1):12614. PubMed ID: 28974759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.