These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35061453)

  • 1. Active Frequency Measurement on Superradiant Strontium Clock Transitions.
    Zhang Y; Shan C; Mølmer K
    Phys Rev Lett; 2022 Jan; 128(1):013604. PubMed ID: 35061453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superradiance on the millihertz linewidth strontium clock transition.
    Norcia MA; Winchester MN; Cline JR; Thompson JK
    Sci Adv; 2016 Oct; 2(10):e1601231. PubMed ID: 27757423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superradiant lasing in inhomogeneously broadened ensembles with spatially varying coupling.
    Bychek A; Hotter C; Plankensteiner D; Ritsch H
    Open Res Eur; 2021; 1():73. PubMed ID: 37645148
    [No Abstract]   [Full Text] [Related]  

  • 4. Characterisation and feasibility study for superradiant lasing in
    Gogyan A; Kazakov G; Bober M; Zawada M
    Opt Express; 2020 Mar; 28(5):6881-6892. PubMed ID: 32225926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collectively enhanced Ramsey readout by cavity sub- to superradiant transition.
    Bohr EA; Kristensen SL; Hotter C; Schäffer SA; Robinson-Tait J; Thomsen JW; Zelevinsky T; Ritsch H; Müller JH
    Nat Commun; 2024 Feb; 15(1):1084. PubMed ID: 38316781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. No-go theorem for superradiant quantum phase transitions in cavity QED and counter-example in circuit QED.
    Nataf P; Ciuti C
    Nat Commun; 2010 Sep; 1():72. PubMed ID: 20842200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localization Driven Superradiant Instability.
    Yin H; Hu J; Ji AC; Juzeliūnas G; Liu XJ; Sun Q
    Phys Rev Lett; 2020 Mar; 124(11):113601. PubMed ID: 32242677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conditional Dynamics in Heterodyne Detection of Superradiant Lasing with Incoherently Pumped Atoms.
    Yu H; Zhang Y; Wu Q; Shan CX; Mølmer K
    Phys Rev Lett; 2024 Aug; 133(7):073601. PubMed ID: 39213549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subnatural Linewidth Superradiant Lasing with Cold ^{88}Sr Atoms.
    Kristensen SL; Bohr E; Robinson-Tait J; Zelevinsky T; Thomsen JW; Müller JH
    Phys Rev Lett; 2023 Jun; 130(22):223402. PubMed ID: 37327424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A steady-state superradiant laser with less than one intracavity photon.
    Bohnet JG; Chen Z; Weiner JM; Meiser D; Holland MJ; Thompson JK
    Nature; 2012 Apr; 484(7392):78-81. PubMed ID: 22481360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superradiant emission dynamics of an optically thin material sample in a short-decay-time optical cavity.
    Greiner C; Boggs B; Mossberg TW
    Phys Rev Lett; 2000 Oct; 85(18):3793-6. PubMed ID: 11041929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical study of superradiant mixing by an unsynchronized superradiant state of multiple atomic ensembles.
    An H; Jeong Y
    Opt Express; 2020 Jul; 28(15):22276-22286. PubMed ID: 32752493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superradiant cooling, trapping, and lasing of dipole-interacting clock atoms.
    Hotter C; Plankensteiner D; Ostermann L; Ritsch H
    Opt Express; 2019 Oct; 27(22):31193-31206. PubMed ID: 31684354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A superradiant clock laser on a magic wavelength optical lattice.
    Maier T; Kraemer S; Ostermann L; Ritsch H
    Opt Express; 2014 Jun; 22(11):13269-79. PubMed ID: 24921521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Squeezed Light Induced Symmetry Breaking Superradiant Phase Transition.
    Zhu CJ; Ping LL; Yang YP; Agarwal GS
    Phys Rev Lett; 2020 Feb; 124(7):073602. PubMed ID: 32142326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultranarrow Superradiant Lasing by Dark Atom-Photon Dressed States.
    Zhang Y; Shan C; Mølmer K
    Phys Rev Lett; 2021 Mar; 126(12):123602. PubMed ID: 33834832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rashba Cavity QED: A Route Towards the Superradiant Quantum Phase Transition.
    Nataf P; Champel T; Blatter G; Basko DM
    Phys Rev Lett; 2019 Nov; 123(20):207402. PubMed ID: 31809096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental Observation of One-Dimensional Superradiance Lattices in Ultracold Atoms.
    Chen L; Wang P; Meng Z; Huang L; Cai H; Wang DW; Zhu SY; Zhang J
    Phys Rev Lett; 2018 May; 120(19):193601. PubMed ID: 29799222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rydberg polaritons in a cavity: a superradiant solid.
    Zhang XF; Sun Q; Wen YC; Liu WM; Eggert S; Ji AC
    Phys Rev Lett; 2013 Mar; 110(9):090402. PubMed ID: 23496692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-Mode Operation of an Optical Lattice Clock Using Strontium and Ytterbium Atoms.
    Akamatsu D; Kobayashi T; Hisai Y; Tanabe T; Hosaka K; Yasuda M; Hong FL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jun; 65(6):1069-1075. PubMed ID: 29856725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.