These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 35061453)
1. Active Frequency Measurement on Superradiant Strontium Clock Transitions. Zhang Y; Shan C; Mølmer K Phys Rev Lett; 2022 Jan; 128(1):013604. PubMed ID: 35061453 [TBL] [Abstract][Full Text] [Related]
2. Superradiance on the millihertz linewidth strontium clock transition. Norcia MA; Winchester MN; Cline JR; Thompson JK Sci Adv; 2016 Oct; 2(10):e1601231. PubMed ID: 27757423 [TBL] [Abstract][Full Text] [Related]
3. Superradiant lasing in inhomogeneously broadened ensembles with spatially varying coupling. Bychek A; Hotter C; Plankensteiner D; Ritsch H Open Res Eur; 2021; 1():73. PubMed ID: 37645148 [No Abstract] [Full Text] [Related]
4. Characterisation and feasibility study for superradiant lasing in Gogyan A; Kazakov G; Bober M; Zawada M Opt Express; 2020 Mar; 28(5):6881-6892. PubMed ID: 32225926 [TBL] [Abstract][Full Text] [Related]
10. A steady-state superradiant laser with less than one intracavity photon. Bohnet JG; Chen Z; Weiner JM; Meiser D; Holland MJ; Thompson JK Nature; 2012 Apr; 484(7392):78-81. PubMed ID: 22481360 [TBL] [Abstract][Full Text] [Related]
11. Superradiant emission dynamics of an optically thin material sample in a short-decay-time optical cavity. Greiner C; Boggs B; Mossberg TW Phys Rev Lett; 2000 Oct; 85(18):3793-6. PubMed ID: 11041929 [TBL] [Abstract][Full Text] [Related]
12. Numerical study of superradiant mixing by an unsynchronized superradiant state of multiple atomic ensembles. An H; Jeong Y Opt Express; 2020 Jul; 28(15):22276-22286. PubMed ID: 32752493 [TBL] [Abstract][Full Text] [Related]
13. Superradiant cooling, trapping, and lasing of dipole-interacting clock atoms. Hotter C; Plankensteiner D; Ostermann L; Ritsch H Opt Express; 2019 Oct; 27(22):31193-31206. PubMed ID: 31684354 [TBL] [Abstract][Full Text] [Related]
14. A superradiant clock laser on a magic wavelength optical lattice. Maier T; Kraemer S; Ostermann L; Ritsch H Opt Express; 2014 Jun; 22(11):13269-79. PubMed ID: 24921521 [TBL] [Abstract][Full Text] [Related]
18. Experimental Observation of One-Dimensional Superradiance Lattices in Ultracold Atoms. Chen L; Wang P; Meng Z; Huang L; Cai H; Wang DW; Zhu SY; Zhang J Phys Rev Lett; 2018 May; 120(19):193601. PubMed ID: 29799222 [TBL] [Abstract][Full Text] [Related]
19. Rydberg polaritons in a cavity: a superradiant solid. Zhang XF; Sun Q; Wen YC; Liu WM; Eggert S; Ji AC Phys Rev Lett; 2013 Mar; 110(9):090402. PubMed ID: 23496692 [TBL] [Abstract][Full Text] [Related]
20. Dual-Mode Operation of an Optical Lattice Clock Using Strontium and Ytterbium Atoms. Akamatsu D; Kobayashi T; Hisai Y; Tanabe T; Hosaka K; Yasuda M; Hong FL IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jun; 65(6):1069-1075. PubMed ID: 29856725 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]