BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 35061886)

  • 1. SFPQ-ABL1 and BCR-ABL1 use different signaling networks to drive B-cell acute lymphoblastic leukemia.
    Brown LM; Hediyeh-Zadeh S; Sadras T; Huckstep H; Sandow JJ; Bartolo RC; Kosasih HJ; Davidson NM; Schmidt B; Bjelosevic S; Johnstone R; Webb AI; Khaw SL; Oshlack A; Davis MJ; Ekert PG
    Blood Adv; 2022 Apr; 6(7):2373-2387. PubMed ID: 35061886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct GAB2 signaling pathways are essential for myeloid and lymphoid transformation and leukemogenesis by BCR-ABL1.
    Gu S; Chan WW; Mohi G; Rosenbaum J; Sayad A; Lu Z; Virtanen C; Li S; Neel BG; Van Etten RA
    Blood; 2016 Apr; 127(14):1803-13. PubMed ID: 26773044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic effects of selective inhibitors targeting the PI3K/AKT/mTOR pathway or NUP214-ABL1 fusion protein in human Acute Lymphoblastic Leukemia.
    Simioni C; Ultimo S; Martelli AM; Zauli G; Milani D; McCubrey JA; Capitani S; Neri LM
    Oncotarget; 2016 Nov; 7(48):79842-79853. PubMed ID: 27821800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tyrosine kinase fusion genes in pediatric BCR-ABL1-like acute lymphoblastic leukemia.
    Boer JM; Steeghs EM; Marchante JR; Boeree A; Beaudoin JJ; Beverloo HB; Kuiper RP; Escherich G; van der Velden VH; van der Schoot CE; de Groot-Kruseman HA; Pieters R; den Boer ML
    Oncotarget; 2017 Jan; 8(3):4618-4628. PubMed ID: 27894077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IKK-dependent activation of NF-κB contributes to myeloid and lymphoid leukemogenesis by BCR-ABL1.
    Hsieh MY; Van Etten RA
    Blood; 2014 Apr; 123(15):2401-11. PubMed ID: 24464015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crizotinib acts as ABL1 inhibitor combining ATP-binding with allosteric inhibition and is active against native BCR-ABL1 and its resistance and compound mutants BCR-ABL1
    Mian AA; Haberbosch I; Khamaisie H; Agbarya A; Pietsch L; Eshel E; Najib D; Chiriches C; Ottmann OG; Hantschel O; Biondi RM; Ruthardt M; Mahajna J
    Ann Hematol; 2021 Aug; 100(8):2023-2029. PubMed ID: 34110462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fusion of EML1 to ABL1 in T-cell acute lymphoblastic leukemia with cryptic t(9;14)(q34;q32).
    De Keersmaecker K; Graux C; Odero MD; Mentens N; Somers R; Maertens J; Wlodarska I; Vandenberghe P; Hagemeijer A; Marynen P; Cools J
    Blood; 2005 Jun; 105(12):4849-52. PubMed ID: 15713800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SFPQ-ABL1-positive B-cell precursor acute lymphoblastic leukemias.
    Biloglav A; Olsson-Arvidsson L; Theander J; Behrendtz M; Castor A; Johansson B
    Genes Chromosomes Cancer; 2020 Sep; 59(9):540-543. PubMed ID: 32306475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Philadelphia chromosome-like acute lymphoblastic leukemia.
    Tasian SK; Loh ML; Hunger SP
    Blood; 2017 Nov; 130(19):2064-2072. PubMed ID: 28972016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RUNX1 transactivates BCR-ABL1 expression in Philadelphia chromosome positive acute lymphoblastic leukemia.
    Masuda T; Maeda S; Shimada S; Sakuramoto N; Morita K; Koyama A; Suzuki K; Mitsuda Y; Matsuo H; Kubota H; Kato I; Tanaka K; Takita J; Hirata M; Kataoka TR; Nakahata T; Adachi S; Hirai H; Mizuta S; Naka K; Imai Y; Kimura S; Sugiyama H; Kamikubo Y
    Cancer Sci; 2022 Feb; 113(2):529-539. PubMed ID: 34902205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SHP2 is required for BCR-ABL1-induced hematologic neoplasia.
    Gu S; Sayad A; Chan G; Yang W; Lu Z; Virtanen C; Van Etten RA; Neel BG
    Leukemia; 2018 Jan; 32(1):203-213. PubMed ID: 28804122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting Kinase-activating Genetic Lesions to Improve Therapy of Pediatric Acute Lymphoblastic Leukemia.
    Franca R; Kuzelicki NK; Sorio C; Toffoletti E; Montecchini O; Poropat A; Rabusin M; Curci D; Paladin D; Stocco G; Decorti G
    Curr Med Chem; 2018; 25(24):2811-2825. PubMed ID: 28748759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RAG enhances BCR-ABL1-positive leukemic cell growth through its endonuclease activity in vitro and in vivo.
    Yuan M; Wang Y; Qin M; Zhao X; Chen X; Li D; Miao Y; Otieno Odhiambo W; Liu H; Ma Y; Ji Y
    Cancer Sci; 2021 Jul; 112(7):2679-2691. PubMed ID: 33949040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BCR-ABL1-independent PI3Kinase activation causing imatinib-resistance.
    Quentmeier H; Eberth S; Romani J; Zaborski M; Drexler HG
    J Hematol Oncol; 2011 Feb; 4():6. PubMed ID: 21299849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergism between IL7R and CXCR4 drives BCR-ABL induced transformation in Philadelphia chromosome-positive acute lymphoblastic leukemia.
    Abdelrasoul H; Vadakumchery A; Werner M; Lenk L; Khadour A; Young M; El Ayoubi O; Vogiatzi F; Krämer M; Schmid V; Chen Z; Yousafzai Y; Cario G; Schrappe M; Müschen M; Halsey C; Mulaw MA; Schewe DM; Hobeika E; Alsadeq A; Jumaa H
    Nat Commun; 2020 Jun; 11(1):3194. PubMed ID: 32581241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BCR-ABL1-like acute lymphoblastic leukaemia: From bench to bedside.
    Boer JM; den Boer ML
    Eur J Cancer; 2017 Sep; 82():203-218. PubMed ID: 28709134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic effect of combined PI3 kinase inhibitor and PARP inhibitor treatment on BCR/ABL1-positive acute lymphoblastic leukemia cells.
    Hiroki H; Akahane K; Inukai T; Morio T; Takagi M
    Int J Hematol; 2023 May; 117(5):748-758. PubMed ID: 36575328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia.
    Roberts KG; Li Y; Payne-Turner D; Harvey RC; Yang YL; Pei D; McCastlain K; Ding L; Lu C; Song G; Ma J; Becksfort J; Rusch M; Chen SC; Easton J; Cheng J; Boggs K; Santiago-Morales N; Iacobucci I; Fulton RS; Wen J; Valentine M; Cheng C; Paugh SW; Devidas M; Chen IM; Reshmi S; Smith A; Hedlund E; Gupta P; Nagahawatte P; Wu G; Chen X; Yergeau D; Vadodaria B; Mulder H; Winick NJ; Larsen EC; Carroll WL; Heerema NA; Carroll AJ; Grayson G; Tasian SK; Moore AS; Keller F; Frei-Jones M; Whitlock JA; Raetz EA; White DL; Hughes TP; Guidry Auvil JM; Smith MA; Marcucci G; Bloomfield CD; Mrózek K; Kohlschmidt J; Stock W; Kornblau SM; Konopleva M; Paietta E; Pui CH; Jeha S; Relling MV; Evans WE; Gerhard DS; Gastier-Foster JM; Mardis E; Wilson RK; Loh ML; Downing JR; Hunger SP; Willman CL; Zhang J; Mullighan CG
    N Engl J Med; 2014 Sep; 371(11):1005-15. PubMed ID: 25207766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid molecular response to dasatinib in Ph-like acute lymphoblastic leukemia patients with ABL1 rearrangements: case series and literature review.
    Tan KW; Zhu YY; Qiu QC; Wang M; Shen HJ; Huang SM; Cao HY; Wan CL; Li YY; Dai HP; Xue SL
    Ann Hematol; 2023 Sep; 102(9):2397-2402. PubMed ID: 37103615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A case report of a truncated ABL1 mutation in 2 cases with Philadelphia chromosome-positive B cell precursor acute lymphoblastic leukemia.
    Kato K; Takagi S; Takano H; Tsunoda S; Watanabe O; Yamaguchi K; Kageyama K; Kaji D; Taya Y; Nishida A; Ishiwata K; Yamamoto H; Yamamoto G; Asano-Mori Y; Koike Y; Makino S; Wake A; Taniguchi S; Uchida N
    Int J Hematol; 2024 Feb; 119(2):205-209. PubMed ID: 38236369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.