These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35062400)

  • 1. Fuzzy Risk-Based Maintenance Strategy with Safety Considerations for the Mining Industry.
    Tubis A; Werbińska-Wojciechowska S; Sliwinski P; Zimroz R
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A risk-based decision support framework for selection of appropriate safety measure system for underground coal mines.
    Samantra C; Datta S; Mahapatra SS
    Int J Inj Contr Saf Promot; 2017 Mar; 24(1):54-68. PubMed ID: 26176824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fuzzy risk assessment for mechanized underground coal mines in Turkey.
    Iphar M; Cukurluoz AK
    Int J Occup Saf Ergon; 2020 Jun; 26(2):256-271. PubMed ID: 29493428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human action quality evaluation based on fuzzy logic with application in underground coal mining.
    Ionica A; Leba M
    Work; 2015; 51(3):611-20. PubMed ID: 25835721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyber-Attacks Risk Analysis Method for Different Levels of Automation of Mining Processes in Mines Based on Fuzzy Theory Use.
    Tubis AA; Werbińska-Wojciechowska S; Góralczyk M; Wróblewski A; Ziętek B
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33339301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of mine ecological environment based on fuzzy hierarchical analysis and grey relational degree.
    Zhang Y; Shang K
    Environ Res; 2024 Sep; 257():119370. PubMed ID: 38851375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pythagorean fuzzy VIKOR-based approach for safety risk assessment in mine industry.
    Gul M; Ak MF; Guneri AF
    J Safety Res; 2019 Jun; 69():135-153. PubMed ID: 31235225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of occupational health hazards and associated risks in fuzzy environment: a case research in an Indian underground coal mine.
    Samantra C; Datta S; Mahapatra SS
    Int J Inj Contr Saf Promot; 2017 Sep; 24(3):311-327. PubMed ID: 27184215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Online evaluation method of coal mine comprehensive level based on FCE.
    Shen L; Jing G; Zeng Q
    PLoS One; 2021; 16(8):e0256026. PubMed ID: 34398911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fuzzy risk prediction of roof fall and rib spalling: based on FFTA-DFCE and risk matrix methods.
    Li W; Ye Y; Wang Q; Wang X; Hu N
    Environ Sci Pollut Res Int; 2020 Mar; 27(8):8535-8547. PubMed ID: 31907815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic assessment and system dynamics simulation of safety risk in whole life cycle of coal mine.
    Zhu Y; Li C; Li L; Yang K; Yang Y; Zhang G
    Environ Sci Pollut Res Int; 2023 May; 30(23):64154-64167. PubMed ID: 37060407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fuzzy multi-criteria decision-making framework for controlling methane explosions in coal mines.
    Kursunoglu N
    Environ Sci Pollut Res Int; 2024 Feb; 31(6):9045-9061. PubMed ID: 38183552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human health and safety risks management in underground coal mines using fuzzy TOPSIS.
    Mahdevari S; Shahriar K; Esfahanipour A
    Sci Total Environ; 2014 Aug; 488-489():85-99. PubMed ID: 24815558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Fuzzy Logic for Predicting of Mine Fire in Underground Coal Mine.
    Danish E; Onder M
    Saf Health Work; 2020 Sep; 11(3):322-334. PubMed ID: 32995058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Exposure to silica dust in coal-mining. Analysis based on measurements made by industrial hygiene laboratories in Poland, 2001-2005].
    Mikołajczyk U; Bujak-Pietrek S; Szadkowska-Stańczyk I
    Med Pr; 2010; 61(3):287-97. PubMed ID: 20677428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Citation-related reliability analysis for a pilot sample of underground coal mines.
    Kinilakodi H; Grayson RL
    Accid Anal Prev; 2011 May; 43(3):1015-21. PubMed ID: 21376896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring mining safety with injury statistics: lost workdays as indicators of risk.
    Coleman PJ; Kerkering JC
    J Safety Res; 2007; 38(5):523-33. PubMed ID: 18023637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of seam height on lost-time injury and fatality rates at small underground bituminous coal mines.
    Peters RH; Fotta B; Mallett LG
    Appl Occup Environ Hyg; 2001 Nov; 16(11):1028-34. PubMed ID: 11757898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-hazard risk characterization and collaborative control oriented to space in non-coal underground mines.
    Wu M; Hu N; Ye Y; Wang Q; Wang X
    Sci Rep; 2022 Sep; 12(1):16452. PubMed ID: 36180464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.