BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35062507)

  • 1. Litter Detection with Deep Learning: A Comparative Study.
    Córdova M; Pinto A; Hellevik CC; Alaliyat SA; Hameed IA; Pedrini H; Torres RDS
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of litter in cities using a smartphone application and citizen science in conjunction with deep learning-based image processing.
    Kako S; Muroya R; Matsuoka D; Isobe A
    Waste Manag; 2024 Jun; 186():271-279. PubMed ID: 38943818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time construction demolition waste detection using state-of-the-art deep learning methods; single-stage vs two-stage detectors.
    Demetriou D; Mavromatidis P; Robert PM; Papadopoulos H; Petrou MF; Nicolaides D
    Waste Manag; 2023 Jul; 167():194-203. PubMed ID: 37269583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive review of methods based on deep learning for diabetes-related foot ulcers.
    Zhang J; Qiu Y; Peng L; Zhou Q; Wang Z; Qi M
    Front Endocrinol (Lausanne); 2022; 13():945020. PubMed ID: 36004341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic detection of seafloor marine litter using towed camera images and deep learning.
    Politikos DV; Fakiris E; Davvetas A; Klampanos IA; Papatheodorou G
    Mar Pollut Bull; 2021 Mar; 164():111974. PubMed ID: 33485020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An adaptive ensemble deep learning framework for reliable detection of pandemic patients.
    Iqbal MS; Naqvi RA; Alizadehsani R; Hussain S; Moqurrab SA; Lee SW
    Comput Biol Med; 2024 Jan; 168():107836. PubMed ID: 38086139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating Deep Learning Algorithms in Pulmonary Nodule Detection
    Traore A; Ly AO; Akhloufi MA
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1335-1338. PubMed ID: 33018235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the impact of Citizen Science-derived data quality on deep learning based classification in marine images.
    Langenkämper D; Simon-Lledó E; Hosking B; Jones DOB; Nattkemper TW
    PLoS One; 2019; 14(6):e0218086. PubMed ID: 31188894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic Target Detection from Satellite Imagery Using Machine Learning.
    Tahir A; Munawar HS; Akram J; Adil M; Ali S; Kouzani AZ; Mahmud MAP
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An approach to the integration of beach litter data from official monitoring programmes and citizen science.
    Zorzo P; Buceta JL; Corredor L; López-Samaniego I; López-Samaniego E
    Mar Pollut Bull; 2021 Dec; 173(Pt A):112902. PubMed ID: 34534930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning-based waste detection in natural and urban environments.
    Majchrowska S; Mikołajczyk A; Ferlin M; Klawikowska Z; Plantykow MA; Kwasigroch A; Majek K
    Waste Manag; 2022 Feb; 138():274-284. PubMed ID: 34920243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. State-of-the-Art Deep Learning Methods for Objects Detection in Remote Sensing Satellite Images.
    Adegun AA; Fonou Dombeu JV; Viriri S; Odindi J
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447699
    [No Abstract]   [Full Text] [Related]  

  • 13. Optimisation of Deep Learning Small-Object Detectors with Novel Explainable Verification.
    Mohamed E; Sirlantzis K; Howells G; Hoque S
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A nationwide assessment of litter on China's beaches using citizen science data.
    Chen H; Wang S; Guo H; Lin H; Zhang Y
    Environ Pollut; 2020 Mar; 258():113756. PubMed ID: 31855673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Deep-Learning and Conventional Machine-Learning Methods for the Automatic Recognition of the Hepatocellular Carcinoma Areas from Ultrasound Images.
    Brehar R; Mitrea DA; Vancea F; Marita T; Nedevschi S; Lupsor-Platon M; Rotaru M; Badea RI
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32485986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endoscopy Artefact Detection by Deep Transfer Learning of Baseline Models.
    Yin TK; Huang KL; Chiu SR; Yang YQ; Chang BR
    J Digit Imaging; 2022 Oct; 35(5):1101-1110. PubMed ID: 35478060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Object detection using YOLO: challenges, architectural successors, datasets and applications.
    Diwan T; Anirudh G; Tembhurne JV
    Multimed Tools Appl; 2023; 82(6):9243-9275. PubMed ID: 35968414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning in diabetic foot ulcers detection: A comprehensive evaluation.
    Yap MH; Hachiuma R; Alavi A; Brüngel R; Cassidy B; Goyal M; Zhu H; Rückert J; Olshansky M; Huang X; Saito H; Hassanpour S; Friedrich CM; Ascher DB; Song A; Kajita H; Gillespie D; Reeves ND; Pappachan JM; O'Shea C; Frank E
    Comput Biol Med; 2021 Aug; 135():104596. PubMed ID: 34247133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sea Mine Detection Framework Using YOLO, SSD and EfficientDet Deep Learning Models.
    Munteanu D; Moina D; Zamfir CG; Petrea ȘM; Cristea DS; Munteanu N
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of deep learning detection and classification towards computer-aided diagnosis of breast lesions in digital X-ray mammograms.
    Al-Antari MA; Han SM; Kim TS
    Comput Methods Programs Biomed; 2020 Nov; 196():105584. PubMed ID: 32554139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.