These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35062593)

  • 1. Improvement in Strain Sensor Stability by Adapting the Metal Contact Layer.
    Choy JY; Jo EB; Yim CJ; Youi HK; Hwang JH; Lee JH; Kim HS
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stretchable Array of Highly Sensitive Pressure Sensors Consisting of Polyaniline Nanofibers and Au-Coated Polydimethylsiloxane Micropillars.
    Park H; Jeong YR; Yun J; Hong SY; Jin S; Lee SJ; Zi G; Ha JS
    ACS Nano; 2015 Oct; 9(10):9974-85. PubMed ID: 26381467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dilute Polymerization of Aniline on PDMS Substrate via Surface Modification Using (3-Aminopropyl)Triethoxysilane for Stretchable Strain Sensor.
    Yim CJ; Choy JY; Youi HK; Hwang JH; Jo EB; Lee JH; Kim HS
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Stretchable, Directionally Oriented Carbon Nanotube/PDMS Conductive Films with Enhanced Sensitivity as Wearable Strain Sensors.
    Tas MO; Baker MA; Masteghin MG; Bentz J; Boxshall K; Stolojan V
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39560-39573. PubMed ID: 31552734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous Strain Distribution of Elastomer Substrates To Enhance the Sensitivity of Stretchable Strain Sensors.
    Jiang Y; Liu Z; Wang C; Chen X
    Acc Chem Res; 2019 Jan; 52(1):82-90. PubMed ID: 30586278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining High Sensitivity and Dynamic Range: Wearable Thin-Film Composite Strain Sensors of Graphene, Ultrathin Palladium, and PEDOT:PSS.
    Ramírez J; Rodriquez D; Urbina A; Cardenas A; Lipomi DJ
    ACS Appl Nano Mater; 2019 Apr; 2(4):2222-2229. PubMed ID: 33829151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A DIY Fabrication Approach of Stretchable Sensors Using Carbon Nano Tube Powder for Wearable Device.
    Wiranata A; Ohsugi Y; Minaminosono A; Mao Z; Kurata H; Hosoya N; Maeda S
    Front Robot AI; 2021; 8():773056. PubMed ID: 34859060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Inkjet-Printed PEDOT:PSS-Based Stretchable Conductor for Wearable Health Monitoring Device Applications.
    Lo LW; Zhao J; Wan H; Wang Y; Chakrabartty S; Wang C
    ACS Appl Mater Interfaces; 2021 May; 13(18):21693-21702. PubMed ID: 33926183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ultraflexible polyurethane yarn-based wearable strain sensor with a polydimethylsiloxane infiltrated multilayer sheath for smart textiles.
    Li X; Koh KH; Farhan M; Lai KWC
    Nanoscale; 2020 Feb; 12(6):4110-4118. PubMed ID: 32022071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A super stretchable and sensitive strain sensor based on a carbon nanocoil network fabricated by a simple peeling-off approach.
    Deng C; Pan L; Zhang D; Li C; Nasir H
    Nanoscale; 2017 Nov; 9(42):16404-16411. PubMed ID: 29057998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Sensitive and Stretchable Strain Sensor Based on a Synergistic Hybrid Conductive Network.
    Liu X; Liang X; Lin Z; Lei Z; Xiong Y; Hu Y; Zhu P; Sun R; Wong CP
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42420-42429. PubMed ID: 32833419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contact-Resistance-Free Stretchable Strain Sensors with High Repeatability and Linearity.
    Li S; Liu G; Li R; Li Q; Zhao Y; Huang M; Zhang M; Yin S; Zhou Y; Tang H; Wang L; Fang G; Su Y
    ACS Nano; 2022 Jan; 16(1):541-553. PubMed ID: 34919398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Stretchable Potentiometric pH Sensor Fabricated via Laser Carbonization and Machining of Carbon-Polyaniline Composite.
    Rahimi R; Ochoa M; Tamayol A; Khalili S; Khademhosseini A; Ziaie B
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):9015-9023. PubMed ID: 28224783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Residual Compressive Stress Enabled 2D-to-3D Junction Transformation in Amorphous Carbon Films for Stretchable Strain Sensors.
    Ma X; Zhang Q; Guo P; Tong X; Zhao Y; Wang A
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):45549-45557. PubMed ID: 32901487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stretchable Pressure Sensor with Leakage-Free Liquid-Metal Electrodes.
    Zhang L; Gao M; Wang R; Deng Z; Gui L
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30884767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning Strain Sensor Performance via Programmed Thin-Film Crack Evolution.
    Zhu J; Wu X; Jan J; Du S; Evans J; Arias AC
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38105-38113. PubMed ID: 34342977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Binder and Substrate Materials on the Performance and Reliability of Stretchable Nanocomposite Strain Sensors.
    Jin Nam H; Yeong Park J; Vu VP; Choa SH
    J Nanosci Nanotechnol; 2021 May; 21(5):2969-2979. PubMed ID: 33653467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stretchable Electronic Sensors of Nanocomposite Network Films for Ultrasensitive Chemical Vapor Sensing.
    Yan H; Zhong M; Lv Z; Wan P
    Small; 2017 Nov; 13(41):. PubMed ID: 28895272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spider-Web-Inspired Stretchable Graphene Woven Fabric for Highly Sensitive, Transparent, Wearable Strain Sensors.
    Liu X; Liu D; Lee JH; Zheng Q; Du X; Zhang X; Xu H; Wang Z; Wu Y; Shen X; Cui J; Mai YW; Kim JK
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2282-2294. PubMed ID: 30582684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Block Copolymer Elastomers for Stretchable Electronics.
    You I; Kong M; Jeong U
    Acc Chem Res; 2019 Jan; 52(1):63-72. PubMed ID: 30586291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.