These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35062597)

  • 1. Mix Frame Visual Servo Control Framework for Autonomous Assistive Robotic Arms.
    Arif Z; Fu Y
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assistive robotic arm: Evaluation of the performance of intelligent algorithms.
    Lebrasseur A; Lettre J; Routhier F; Archambault PS; Campeau-Lecours A
    Assist Technol; 2021 Mar; 33(2):95-104. PubMed ID: 31070524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intuitive wireless control of a robotic arm for people living with an upper body disability.
    Fall CL; Turgeon P; Campeau-Lecours A; Maheu V; Boukadoum M; Roy S; Massicotte D; Gosselin C; Gosselin B
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4399-402. PubMed ID: 26737270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intuitive adaptive orientation control of assistive robots for people living with upper limb disabilities.
    Vu DS; Allard UC; Gosselin C; Routhier F; Gosselin B; Campeau-Lecours A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():795-800. PubMed ID: 28813917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voice Control Interface Prototype for Assistive Robots for People Living with Upper Limb Disabilities.
    Poirier S; Routhier F; Campeau-Lecours A
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():46-52. PubMed ID: 31374605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semi-Autonomous Tongue Control of an Assistive Robotic Arm for Individuals with Quadriplegia.
    Hildebrand M; Bonde F; Kobborg RVN; Andersen C; Norman AF; Thogersen M; Bengtson SH; Dosen S; Struijk NSLA
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():157-162. PubMed ID: 31374623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Accelerated Finite-Time Convergent Neural Network for Visual Servoing of a Flexible Surgical Endoscope With Physical and RCM Constraints.
    Li W; Chiu PWY; Li Z
    IEEE Trans Neural Netw Learn Syst; 2020 Dec; 31(12):5272-5284. PubMed ID: 32011270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smart Assistive Architecture for the Integration of IoT Devices, Robotic Systems, and Multimodal Interfaces in Healthcare Environments.
    Brunete A; Gambao E; Hernando M; Cedazo R
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33809884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of computer vision for semi-autonomous control of assistive robotic manipulators (ARMs).
    Bengtson SH; Bak T; Andreasen Struijk LNS; Moeslund TB
    Disabil Rehabil Assist Technol; 2020 Oct; 15(7):731-745. PubMed ID: 31268368
    [No Abstract]   [Full Text] [Related]  

  • 10. Visual Sensor Fusion Based Autonomous Robotic System for Assistive Drinking.
    Try P; Schöllmann S; Wöhle L; Gebhard M
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracking moving target for 6 degree-of-freedom robot manipulator with adaptive visual servoing based on deep reinforcement learning PID controller.
    Wang F; Ren B; Liu Y; Cui B
    Rev Sci Instrum; 2022 Apr; 93(4):045108. PubMed ID: 35489878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual Servoing for an Autonomous Hexarotor Using a Neural Network Based PID Controller.
    Lopez-Franco C; Gomez-Avila J; Alanis AY; Arana-Daniel N; Villaseñor C
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28805689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinematics and Singularity Analysis of a 7-DOF Redundant Manipulator.
    Shi X; Guo Y; Chen X; Chen Z; Yang Z
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a Vision-Guided Shared-Control System for Assistive Robotic Manipulators.
    Ding D; Styler B; Chung CS; Houriet A
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using workspace restrictiveness for adaptive velocity adjustment of assistive robots and upper limb exoskeletons.
    Mohammadi M; Cardoso ASS; Andreasen Struijk LNS
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introduction and testing of an alternative control approach for a robotic prosthetic arm.
    Griggs L; Fahimi F
    Open Biomed Eng J; 2014; 8():93-105. PubMed ID: 25400714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative performance analysis of M-IMU/EMG and voice user interfaces for assistive robots.
    Laureiti C; Cordella F; di Luzio FS; Saccucci S; Davalli A; Sacchetti R; Zollo L
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1001-1006. PubMed ID: 28813952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Multimodal Adaptive Wireless Control Interface for People With Upper-Body Disabilities.
    Fall CL; Quevillon F; Blouin M; Latour S; Campeau-Lecours A; Gosselin C; Gosselin B
    IEEE Trans Biomed Circuits Syst; 2018 Jun; 12(3):564-575. PubMed ID: 29877820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of a Wheelchair-Mounted 6DOF Assistive Robot With Chin and Finger Joysticks.
    Rulik I; Sunny MSH; Sanjuan De Caro JD; Zarif MII; Brahmi B; Ahamed SI; Schultz K; Wang I; Leheng T; Longxiang JP; Rahman MH
    Front Robot AI; 2022; 9():885610. PubMed ID: 35937617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multi-sensorial hybrid control for robotic manipulation in human-robot workspaces.
    Pomares J; Perea I; García GJ; Jara CA; Corrales JA; Torres F
    Sensors (Basel); 2011; 11(10):9839-62. PubMed ID: 22163729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.