These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 35063074)

  • 1. Control of mammalian locomotion by ventral spinocerebellar tract neurons.
    Chalif JI; Martínez-Silva ML; Pagiazitis JG; Murray AJ; Mentis GZ
    Cell; 2022 Jan; 185(2):328-344.e26. PubMed ID: 35063074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitatory Spinal Lhx9-Derived Interneurons Modulate Locomotor Frequency in Mice.
    Bertho M; Caldeira V; Hsu LJ; Löw P; Borgius L; Kiehn O
    J Neurosci; 2024 May; 44(18):. PubMed ID: 38438260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between Dorsal and Ventral Root Stimulation on the Generation of Locomotor-Like Activity in the Neonatal Mouse Spinal Cord.
    Pujala A; Blivis D; O'Donovan MJ
    eNeuro; 2016; 3(3):. PubMed ID: 27419215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing diversity within subpopulations of locomotor-related V0 interneurons.
    Griener A; Zhang W; Kao H; Wagner C; Gosgnach S
    Dev Neurobiol; 2015 Nov; 75(11):1189-203. PubMed ID: 25649879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organization of flexor-extensor interactions in the mammalian spinal cord: insights from computational modelling.
    Shevtsova NA; Rybak IA
    J Physiol; 2016 Nov; 594(21):6117-6131. PubMed ID: 27292055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Locomotor rhythm generation linked to the output of spinal shox2 excitatory interneurons.
    Dougherty KJ; Zagoraiou L; Satoh D; Rozani I; Doobar S; Arber S; Jessell TM; Kiehn O
    Neuron; 2013 Nov; 80(4):920-33. PubMed ID: 24267650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity of Hb9 interneurons during fictive locomotion in mouse spinal cord.
    Kwan AC; Dietz SB; Webb WW; Harris-Warrick RM
    J Neurosci; 2009 Sep; 29(37):11601-13. PubMed ID: 19759307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization.
    Zhong G; Shevtsova NA; Rybak IA; Harris-Warrick RM
    J Physiol; 2012 Oct; 590(19):4735-59. PubMed ID: 22869012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhythmic activity of feline dorsal and ventral spinocerebellar tract neurons during fictive motor actions.
    Fedirchuk B; Stecina K; Kristensen KK; Zhang M; Meehan CF; Bennett DJ; Hultborn H
    J Neurophysiol; 2013 Jan; 109(2):375-88. PubMed ID: 23100134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional distribution of putative rhythm-generating and pattern-forming components of the mammalian locomotor CPG.
    Griener A; Dyck J; Gosgnach S
    Neuroscience; 2013 Oct; 250():644-50. PubMed ID: 23933310
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Haque F; Rancic V; Zhang W; Clugston R; Ballanyi K; Gosgnach S
    J Neurosci; 2018 Jun; 38(25):5666-5676. PubMed ID: 29789381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor neurons control locomotor circuit function retrogradely via gap junctions.
    Song J; Ampatzis K; Björnfors ER; El Manira A
    Nature; 2016 Jan; 529(7586):399-402. PubMed ID: 26760208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Information to cerebellum on spinal motor networks mediated by the dorsal spinocerebellar tract.
    Stecina K; Fedirchuk B; Hultborn H
    J Physiol; 2013 Nov; 591(22):5433-43. PubMed ID: 23613538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A survey of spinal collateral actions of feline ventral spinocerebellar tract neurons.
    Geborek P; Nilsson E; Bolzoni F; Jankowska E
    Eur J Neurosci; 2013 Feb; 37(3):380-92. PubMed ID: 23167927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmitter phenotypes of commissural interneurons in the lamprey spinal cord.
    Mahmood R; Restrepo CE; El Manira A
    Neuroscience; 2009 Dec; 164(3):1057-67. PubMed ID: 19737601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anatomical and electrophysiological characterization of a population of dI6 interneurons in the neonatal mouse spinal cord.
    Griener A; Zhang W; Kao H; Haque F; Gosgnach S
    Neuroscience; 2017 Oct; 362():47-59. PubMed ID: 28844009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential Contribution of V0 Interneurons to Execution of Rhythmic and Nonrhythmic Motor Behaviors.
    Zelenin PV; Vemula MG; Lyalka VF; Kiehn O; Talpalar AE; Deliagina TG
    J Neurosci; 2021 Apr; 41(15):3432-3445. PubMed ID: 33637562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic mechanisms underlying modulation of locomotor-related motoneuron output by premotor cholinergic interneurons.
    Nascimento F; Broadhead MJ; Tetringa E; Tsape E; Zagoraiou L; Miles GB
    Elife; 2020 Feb; 9():. PubMed ID: 32081133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locomotor rhythm maintenance: electrical coupling among premotor excitatory interneurons in the brainstem and spinal cord of young Xenopus tadpoles.
    Li WC; Roberts A; Soffe SR
    J Physiol; 2009 Apr; 587(Pt 8):1677-93. PubMed ID: 19221124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Dmrt3-Derived Neurons Suggest a Role within Locomotor Circuits.
    Perry S; Larhammar M; Vieillard J; Nagaraja C; Hilscher MM; Tafreshiha A; Rofo F; Caixeta FV; Kullander K
    J Neurosci; 2019 Mar; 39(10):1771-1782. PubMed ID: 30578339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.