These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35063523)

  • 1. A fuzzy knowledge-based model for assessing risk of pesticides into the air in cropping systems.
    Ferraro DO; de Paula R
    Sci Total Environ; 2022 May; 820():153158. PubMed ID: 35063523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the risk of pesticide environmental impact in several Argentinian cropping systems with a fuzzy expert indicator.
    Arregui MC; Sánchez D; Althaus R; Scotta RR; Bertolaccini I
    Pest Manag Sci; 2010 Jul; 66(7):736-40. PubMed ID: 20232283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity analysis of the STICS-MACRO model to identify cropping practices reducing pesticides losses.
    Lammoglia SK; Makowski D; Moeys J; Justes E; Barriuso E; Mamy L
    Sci Total Environ; 2017 Feb; 580():117-129. PubMed ID: 27986318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling human health risks from pesticide use in innovative legume-cereal intercropping systems in Mediterranean conditions.
    Zemmouri B; Lammoglia SK; Bouras FZ; Seghouani M; Rebouh NY; Latati M
    Ecotoxicol Environ Saf; 2022 Jun; 238():113590. PubMed ID: 35525117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring and predicting environmental concentrations of pesticides in air after application to paddy water systems.
    Ferrari F; Karpouzas DG; Trevisan M; Capri E
    Environ Sci Technol; 2005 May; 39(9):2968-75. PubMed ID: 15926540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing human health risks from pesticide use in conventional and innovative cropping systems with the BROWSE model.
    Lammoglia SK; Kennedy MC; Barriuso E; Alletto L; Justes E; Munier-Jolain N; Mamy L
    Environ Int; 2017 Aug; 105():66-78. PubMed ID: 28521191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential use of the STICS crop model and of the MACRO pesticide fate model to simulate pesticides leaching in cropping systems.
    Lammoglia SK; Moeys J; Barriuso E; Larsbo M; Marín-Benito JM; Justes E; Alletto L; Ubertosi M; Nicolardot B; Munier-Jolain N; Mamy L
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):6895-6909. PubMed ID: 27194012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An indicator of pesticide environmental impact based on a fuzzy expert system.
    van der Werf HM; Zimmer C
    Chemosphere; 1998 Apr; 36(10):2225-49. PubMed ID: 9566298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Historical trends of the ecotoxicological pesticide risk from the main grain crops in Rolling Pampa (Argentina).
    Ferraro DO; Ghersa F; de Paula R; Duarte Vera AC; Pessah S
    PLoS One; 2020; 15(11):e0238676. PubMed ID: 33151929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved description of pesticide volatilization: refinement of the pesticide leaching model (PELMO).
    Wolters A; Klein M; Vereecken H
    J Environ Qual; 2004; 33(5):1629-37. PubMed ID: 15356222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting and measuring environmental concentration of pesticides in air after soil application.
    Ferrari F; Trevisan M; Capri E
    J Environ Qual; 2003; 32(5):1623-33. PubMed ID: 14535302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying pesticide emission fractions for tropical conditions.
    Gentil-Sergent C; Basset-Mens C; Gaab J; Mottes C; Melero C; Fantke P
    Chemosphere; 2021 Jul; 275():130014. PubMed ID: 33662717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconciling pesticide reduction with economic and environmental sustainability in arable farming.
    Lechenet M; Bretagnolle V; Bockstaller C; Boissinot F; Petit MS; Petit S; Munier-Jolain NM
    PLoS One; 2014; 9(6):e97922. PubMed ID: 24887494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling volatilization emissions of soil-applied pesticides under agricultural field conditions.
    Ghosh S; Crist K
    Heliyon; 2022 Dec; 8(12):e11810. PubMed ID: 36471845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the entrained air and initial droplet velocity on the release height parameter of a Gaussian spray drift model.
    Stainier C; Destain MF; Schiffers B; Lebeau F
    Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):197-200. PubMed ID: 17390793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaporation drift of pesticides active ingredients.
    De Schampheleire M; Nuyttens D; De Keyser D; Spanoghe P
    Commun Agric Appl Biol Sci; 2008; 73(4):739-42. PubMed ID: 19226822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France).
    Vernier F; Leccia-Phelpin O; Lescot JM; Minette S; Miralles A; Barberis D; Scordia C; Kuentz-Simonet V; Tonneau JP
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):6923-6950. PubMed ID: 27726081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Addressing bystander exposure to agricultural pesticides in life cycle impact assessment.
    Ryberg MW; Rosenbaum RK; Mosqueron L; Fantke P
    Chemosphere; 2018 Apr; 197():541-549. PubMed ID: 29407816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of environmental impact quotient model to Kumluca region, Turkey to determine environmental impacts of pesticides.
    Muhammetoglu A; Uslu B
    Water Sci Technol; 2007; 56(1):139-45. PubMed ID: 17711009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues.
    Scholtz MT; Bidleman TF
    Sci Total Environ; 2007 May; 377(1):61-80. PubMed ID: 17346778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.