These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35063523)

  • 21. An improved screening tool for predicting volatilization of pesticides applied to soils.
    Davie-Martin CL; Hageman KJ; Chin YP
    Environ Sci Technol; 2013 Jan; 47(2):868-76. PubMed ID: 23214927
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An analysis of the climate change effects on pesticide vapor drift from ground-based pesticide applications to cotton.
    Kannan N
    Sci Rep; 2023 Jun; 13(1):9740. PubMed ID: 37328554
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Factors affecting aerial spray drift in the Brazilian Cerrado.
    Baio FHR; Antuniassi UR; Castilho BR; Teodoro PE; Silva EED
    PLoS One; 2019; 14(2):e0212289. PubMed ID: 30779797
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aerial short-range dispersion of volatilized pesticides from an area source.
    Wittich KP; Siebers J
    Int J Biometeorol; 2002 Aug; 46(3):126-35. PubMed ID: 12194005
    [TBL] [Abstract][Full Text] [Related]  

  • 25. FESAEI: a fuzzy rule-based expert system for the assessment of environmental impacts : A fuzzy logic approach to impact assessment.
    de Tomas Sánchez JE; de Tomás Marín S; Clavell VP
    Environ Monit Assess; 2018 Aug; 190(9):528. PubMed ID: 30120608
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding the tropospheric transport and fate of agricultural pesticides.
    Hebert VR; Miller GC
    Rev Environ Contam Toxicol; 2004; 181():1-36. PubMed ID: 14738196
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of Temperature, Relative Humidity, and Soil Properties on the Soil-Air Partitioning of Semivolatile Pesticides: Laboratory Measurements and Predictive Models.
    Davie-Martin CL; Hageman KJ; Chin YP; Rougé V; Fujita Y
    Environ Sci Technol; 2015 Sep; 49(17):10431-9. PubMed ID: 26258946
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Environmental attitudes and drift reduction behavior among commercial pesticide applicators in a U.S. agricultural landscape.
    Reimer AP; Prokopy LS
    J Environ Manage; 2012 Dec; 113():361-9. PubMed ID: 23062271
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of models to assess the reduction in contamination of water bodies by agricultural pesticides through the implementation of policy instruments: A case study of the Voluntary Initiative in the UK.
    Garratt J; Kennedy A
    Pest Manag Sci; 2006 Dec; 62(12):1138-49. PubMed ID: 16981249
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decision support tools for environmentally safe use of pesticides.
    Doruchowski G; Balsari P; Marucco P; Herbst A; Wehmann HJ; Roettele M; Gil E; Codis S; Pauwelyn E
    Commun Agric Appl Biol Sci; 2013; 78(2):37-45. PubMed ID: 25145224
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.
    Katagi T
    Rev Environ Contam Toxicol; 2010; 204():1-132. PubMed ID: 19957234
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of octanol-air partition coefficients of organochlorine pesticides (OCPs) as a function of temperature: application to air-soil exchange.
    Odabasi M; Cetin B
    J Environ Manage; 2012 Dec; 113():432-9. PubMed ID: 23102644
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Validation of the AGDISP model for predicting airborne atrazine spray drift: A South African ground application case study.
    Nsibande SA; Dabrowski JM; van der Walt E; Venter A; Forbes PB
    Chemosphere; 2015 Nov; 138():454-61. PubMed ID: 26171732
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct and indirect drift assessment means. Part 4: a comparative study.
    Nuyttens D; Baetens K; De Schampheleire M; Sonck B
    Commun Agric Appl Biol Sci; 2008; 73(4):769-74. PubMed ID: 19226827
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pesticide buffer zones for the protection of wildlife.
    Burn A
    Pest Manag Sci; 2003 May; 59(5):583-90. PubMed ID: 12741527
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Primary and secondary pesticide drift profiles from a peach orchard.
    Zivan O; Bohbot-Raviv Y; Dubowski Y
    Chemosphere; 2017 Jun; 177():303-310. PubMed ID: 28314235
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Volatilization of parathion and chlorothalonil from a potato crop simulated by the PEARL model.
    Leistra M; van den Berg F
    Environ Sci Technol; 2007 Apr; 41(7):2243-8. PubMed ID: 17438770
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimation of emission fluxes from a horizontal flux budget method, exemplified with determination of pesticide volatilization.
    Jensen NO; Andersen HV
    Environ Pollut; 2008 Nov; 156(1):193-8. PubMed ID: 18262316
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mulch of plant residues at the soil surface impact the leaching and persistence of pesticides: A modelling study from soil columns.
    Aslam S; Iqbal A; Lafolie F; Recous S; Benoit P; Garnier P
    J Contam Hydrol; 2018 Jul; 214():54-64. PubMed ID: 29871763
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pesticide exposure, safety issues, and risk assessment indicators.
    Damalas CA; Eleftherohorinos IG
    Int J Environ Res Public Health; 2011 May; 8(5):1402-19. PubMed ID: 21655127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.