These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1432 related articles for article (PubMed ID: 35063713)

  • 1. Fully connected network with multi-scale dilation convolution module in evaluating atrial septal defect based on MRI segmentation.
    Chen H; Yan S; Xie M; Ye Y; Ye Y; Zhu D; Su L; Huang J
    Comput Methods Programs Biomed; 2022 Mar; 215():106608. PubMed ID: 35063713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multiple-channel and atrous convolution network for ultrasound image segmentation.
    Zhang L; Zhang J; Li Z; Song Y
    Med Phys; 2020 Dec; 47(12):6270-6285. PubMed ID: 33007105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Fully Automatic Glioma Segmentation Algorithm of Magnetic Resonance Imaging Based on 3D-UNet With More Global Contextual Feature Extraction: An Improvement on Insufficient Extraction of Global Features].
    Tian H; Wang Y; Ji Y; Rahman MM
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2024 Mar; 55(2):447-454. PubMed ID: 38645864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiac Chamber Segmentation Using Deep Learning on Magnetic Resonance Images from Patients Before and After Atrial Septal Occlusion Surgery.
    Lu Y; Fu X; Li X; Qi Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1211-1216. PubMed ID: 33018205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel U-Net approach to segment the cardiac chamber in magnetic resonance images with ghost artifacts.
    Zhao M; Wei Y; Lu Y; Wong KKL
    Comput Methods Programs Biomed; 2020 Nov; 196():105623. PubMed ID: 32652355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Densely connected U-Net retinal vessel segmentation algorithm based on multi-scale feature convolution extraction.
    Du X; Wang J; Sun W
    Med Phys; 2021 Jul; 48(7):3827-3841. PubMed ID: 34028030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GCW-UNet segmentation of cardiac magnetic resonance images for evaluation of left atrial enlargement.
    Wong KKL; Zhang A; Yang K; Wu S; Ghista DN
    Comput Methods Programs Biomed; 2022 Jun; 221():106915. PubMed ID: 35653942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation.
    Wang B; Lei Y; Tian S; Wang T; Liu Y; Patel P; Jani AB; Mao H; Curran WJ; Liu T; Yang X
    Med Phys; 2019 Apr; 46(4):1707-1718. PubMed ID: 30702759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ASD-Net: a novel U-Net based asymmetric spatial-channel convolution network for precise kidney and kidney tumor image segmentation.
    Ji Z; Mu J; Liu J; Zhang H; Dai C; Zhang X; Ganchev I
    Med Biol Eng Comput; 2024 Jun; 62(6):1673-1687. PubMed ID: 38326677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MADR-Net: multi-level attention dilated residual neural network for segmentation of medical images.
    Balraj K; Ramteke M; Mittal S; Bhargava R; Rathore AS
    Sci Rep; 2024 Jun; 14(1):12699. PubMed ID: 38830932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-Scale Deep Neural Network Based on Dilated Convolution for Spacecraft Image Segmentation.
    Liu Y; Zhu M; Wang J; Guo X; Yang Y; Wang J
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dilated convolution network with edge fusion block and directional feature maps for cardiac MRI segmentation.
    Chen Z; Bai J; Lu Y
    Front Physiol; 2023; 14():1027076. PubMed ID: 36776975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-level Kronecker Convolutional Neural Network (ML-KCNN) for Glioma Segmentation from Multi-modal MRI Volumetric Data.
    Ali MJ; Raza B; Shahid AR
    J Digit Imaging; 2021 Aug; 34(4):905-921. PubMed ID: 34327627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MHSU-Net: A more versatile neural network for medical image segmentation.
    Ma H; Zou Y; Liu PX
    Comput Methods Programs Biomed; 2021 Sep; 208():106230. PubMed ID: 34148011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated left ventricular segmentation from cardiac magnetic resonance images via adversarial learning with multi-stage pose estimation network and co-discriminator.
    Wu H; Lu X; Lei B; Wen Z
    Med Image Anal; 2021 Feb; 68():101891. PubMed ID: 33260108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic Liver Tumor Segmentation on Dynamic Contrast Enhanced MRI Using 4D Information: Deep Learning Model Based on 3D Convolution and Convolutional LSTM.
    Zheng R; Wang Q; Lv S; Li C; Wang C; Chen W; Wang H
    IEEE Trans Med Imaging; 2022 Oct; 41(10):2965-2976. PubMed ID: 35576424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hepatic and portal vein segmentation with dual-stream deep neural network.
    Xu J; Jiang W; Wu J; Zhang W; Zhu Z; Xin J; Zheng N; Wang B
    Med Phys; 2024 Aug; 51(8):5441-5456. PubMed ID: 38648676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-Net: A novel dense fully convolutional neural network for thyroid nodule segmentation.
    Nie X; Zhou X; Tong T; Lin X; Wang L; Zheng H; Li J; Xue E; Chen S; Zheng M; Chen C; Du M
    Front Neurosci; 2022; 16():872601. PubMed ID: 36117632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A modality-collaborative convolution and transformer hybrid network for unpaired multi-modal medical image segmentation with limited annotations.
    Liu H; Zhuang Y; Song E; Xu X; Ma G; Cetinkaya C; Hung CC
    Med Phys; 2023 Sep; 50(9):5460-5478. PubMed ID: 36864700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RSU-Net: U-net based on residual and self-attention mechanism in the segmentation of cardiac magnetic resonance images.
    Li YZ; Wang Y; Huang YH; Xiang P; Liu WX; Lai QQ; Gao YY; Xu MS; Guo YF
    Comput Methods Programs Biomed; 2023 Apr; 231():107437. PubMed ID: 36863157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 72.