These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
44. Evaluating scintillators used in radiation detectors of medical imaging systems by the effective fidelity index method. Kandarakis I; Cavouras D; Prassopoulos P; Kanellopoulos E; Nomicos CD; Panayiotakis GS Eur J Radiol; 1999 Apr; 30(1):61-6. PubMed ID: 10389014 [TBL] [Abstract][Full Text] [Related]
45. Light Yield Enhancement of 157-Gadolinium Oxysulfide Scintillator Screens for the High-Resolution Neutron Imaging. Crha J; Vila-Comamala J; Lehmann E; David C; Trtik P MethodsX; 2019; 6():107-114. PubMed ID: 30656142 [TBL] [Abstract][Full Text] [Related]
46. Neutron imaging detector with 2 μm spatial resolution based on event reconstruction of neutron capture in gadolinium oxysulfide scintillators. Hussey DS; LaManna JM; Baltic E; Jacobson DL Nucl Instrum Methods Phys Res A; 2017 Sep; 866():. PubMed ID: 34857978 [TBL] [Abstract][Full Text] [Related]
47. ESR response of CFQ-Gd2O3 dosimeters to a mixed neutron-gamma field: Monte Carlo simulation. Hoseininaveh M; Ranjbar AH Appl Radiat Isot; 2015 Nov; 105():238-243. PubMed ID: 26342935 [TBL] [Abstract][Full Text] [Related]
48. Fabrication and characterization of the source grating for visibility improvement of neutron phase imaging with gratings. Kim J; Lee KH; Lim CH; Kim T; Ahn CW; Cho G; Lee SW Rev Sci Instrum; 2013 Jun; 84(6):063705. PubMed ID: 23822350 [TBL] [Abstract][Full Text] [Related]
50. Modelling of composite neutron scintillators. Stephan AC; Dai S; Wallace SA; Miller LF Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):165-9. PubMed ID: 16604620 [TBL] [Abstract][Full Text] [Related]
51. Neutron dosimetric measurements in shuttle and MIR. Reitz G Radiat Meas; 2001 Jun; 33(3):341-6. PubMed ID: 11855416 [TBL] [Abstract][Full Text] [Related]
52. Measurement of neutron dose with an organic liquid scintillator coupled with a spectrum weight function. Kim E; Endo A; Yamaguchi Y; Yoshizawa M; Nakamura T Radiat Prot Dosimetry; 2002; 102(1):31-40. PubMed ID: 12212900 [TBL] [Abstract][Full Text] [Related]
53. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments. Miller ME; Sztejnberg ML; González SJ; Thorp SI; Longhino JM; Estryk G Med Phys; 2011 Dec; 38(12):6502-12. PubMed ID: 22149833 [TBL] [Abstract][Full Text] [Related]
54. Gamma In Addition to Neutron Tomography (GIANT) at the NECTAR instrument. Kumar R; Sommer L; Tremsin AS; Losko AS Sci Rep; 2023 Nov; 13(1):20120. PubMed ID: 37978310 [TBL] [Abstract][Full Text] [Related]
55. Optimum lithium loading of a liquid scintillator for neutron and neutrino detection. Bergeron DE; Mumm HP; Tyra MA; Rosa J; Nour S; Langford TJ Nucl Instrum Methods Phys Res A; 2020; 953():. PubMed ID: 33093736 [TBL] [Abstract][Full Text] [Related]
56. Optimization of MAXED input parameters with applications to the unfolding of neutron diagnostics data from the Joint European Torus. Giacomelli L; Reginatto M; Rev Sci Instrum; 2019 Sep; 90(9):093505. PubMed ID: 31575238 [TBL] [Abstract][Full Text] [Related]
57. Neutron flat-panel detector using In-Ga-Zn-O thin-film transistor. Fujiwara T; Miyoshi H; Mitsuya Y; Yamada NL; Wakabayashi Y; Otake Y; Hino M; Kino K; Tanaka M; Oshima N; Takahashi H Rev Sci Instrum; 2022 Jan; 93(1):013304. PubMed ID: 35104992 [TBL] [Abstract][Full Text] [Related]