These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 35064079)
1. Turning traditionally nonwetting surfaces wetting for even ultra-high surface energy liquids. Wilke KL; Lu Z; Song Y; Wang EN Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35064079 [TBL] [Abstract][Full Text] [Related]
2. Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars. Arunachalam S; Domingues EM; Das R; Nauruzbayeva J; Buttner U; Syed A; Mishra H J Vis Exp; 2020 Feb; (156):. PubMed ID: 32116308 [TBL] [Abstract][Full Text] [Related]
3. Rates of cavity filling by liquids. Seo D; Schrader AM; Chen SY; Kaufman Y; Cristiani TR; Page SH; Koenig PH; Gizaw Y; Lee DW; Israelachvili JN Proc Natl Acad Sci U S A; 2018 Aug; 115(32):8070-8075. PubMed ID: 30026197 [TBL] [Abstract][Full Text] [Related]
4. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment. Synytska A; Ionov L; Grundke K; Stamm M Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778 [TBL] [Abstract][Full Text] [Related]
5. Utilizing dynamic tensiometry to quantify contact angle hysteresis and wetting state transitions on nonwetting surfaces. Kleingartner JA; Srinivasan S; Mabry JM; Cohen RE; McKinley GH Langmuir; 2013 Nov; 29(44):13396-406. PubMed ID: 24070378 [TBL] [Abstract][Full Text] [Related]
7. Wettability of Reentrant Surfaces: A Global Energy Approach. Silvestrini M; Brito C Langmuir; 2017 Oct; 33(43):12535-12545. PubMed ID: 28985080 [TBL] [Abstract][Full Text] [Related]
8. Study on the wetting transition of a liquid droplet sitting on a square-array cosine wave-like patterned surface. Promraksa A; Chuang YC; Chen LJ J Colloid Interface Sci; 2014 Mar; 418():8-19. PubMed ID: 24461812 [TBL] [Abstract][Full Text] [Related]
9. Repellent surfaces. Turning a surface superrepellent even to completely wetting liquids. Liu TL; Kim CJ Science; 2014 Nov; 346(6213):1096-100. PubMed ID: 25430765 [TBL] [Abstract][Full Text] [Related]
10. Binary mixture droplet wetting on micro-structure decorated surfaces. Al Balushi KM; Sefiane K; Orejon D J Colloid Interface Sci; 2022 Apr; 612():792-805. PubMed ID: 35065463 [TBL] [Abstract][Full Text] [Related]
11. Water and Ethanol Droplet Wetting Transition during Evaporation on Omniphobic Surfaces. Chen X; Weibel JA; Garimella SV Sci Rep; 2015 Nov; 5():17110. PubMed ID: 26603940 [TBL] [Abstract][Full Text] [Related]
12. Progress in understanding wetting transitions on rough surfaces. Bormashenko E Adv Colloid Interface Sci; 2015 Aug; 222():92-103. PubMed ID: 24594103 [TBL] [Abstract][Full Text] [Related]
13. Apparent Contact Angles on Lubricant-Impregnated Surfaces/SLIPS: From Superhydrophobicity to Electrowetting. McHale G; Orme BV; Wells GG; Ledesma-Aguilar R Langmuir; 2019 Mar; 35(11):4197-4204. PubMed ID: 30759342 [TBL] [Abstract][Full Text] [Related]
14. Two-fluid wetting behavior of a hydrophobic silicon nanowire array. Kim Y; Chung Y; Tian Y; Carraro C; Maboudian R Langmuir; 2014 Nov; 30(44):13330-7. PubMed ID: 25356959 [TBL] [Abstract][Full Text] [Related]
15. Modeling the Maximum Spreading of Liquid Droplets Impacting Wetting and Nonwetting Surfaces. Lee JB; Derome D; Guyer R; Carmeliet J Langmuir; 2016 Feb; 32(5):1299-308. PubMed ID: 26743317 [TBL] [Abstract][Full Text] [Related]
16. Effects of Nanodroplet Sizes on Wettability, Electrowetting Transition, and Spontaneous Dewetting Transition on Nanopillar-Arrayed Surfaces. He X; Wang YF; Zhang BX; Wang SL; Yang YR; Wang XD; Lee DJ Langmuir; 2021 Dec; 37(50):14571-14581. PubMed ID: 34894696 [TBL] [Abstract][Full Text] [Related]
17. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale. Leroy F; Müller-Plathe F Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209 [TBL] [Abstract][Full Text] [Related]
18. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition. Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480 [TBL] [Abstract][Full Text] [Related]
19. Turning a Superhydrophilic Surface Weakly Hydrophilic: Topological Wetting States. Gao Y; Zhu C; Zuhlke C; Alexander D; Francisco JS; Zeng XC J Am Chem Soc; 2020 Oct; 142(43):18491-18502. PubMed ID: 33059449 [TBL] [Abstract][Full Text] [Related]
20. Energy dissipation during homogeneous wetting of surfaces with randomly and periodically distributed cylindrical pillars. Kumar P; Mulvaney P; Harvie DJE J Colloid Interface Sci; 2024 Apr; 659():105-118. PubMed ID: 38159487 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]