BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 35064746)

  • 1. Clinical validation of an automatic atlas-based segmentation tool for male pelvis CT images.
    Casati M; Piffer S; Calusi S; Marrazzo L; Simontacchi G; Di Cataldo V; Greto D; Desideri I; Vernaleone M; Francolini G; Livi L; Pallotta S
    J Appl Clin Med Phys; 2022 Mar; 23(3):e13507. PubMed ID: 35064746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technology assessment of automated atlas based segmentation in prostate bed contouring.
    Hwee J; Louie AV; Gaede S; Bauman G; D'Souza D; Sexton T; Lock M; Ahmad B; Rodrigues G
    Radiat Oncol; 2011 Sep; 6():110. PubMed ID: 21906279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methodological approach to create an atlas using a commercial auto-contouring software.
    Casati M; Piffer S; Calusi S; Marrazzo L; Simontacchi G; Di Cataldo V; Greto D; Desideri I; Vernaleone M; Francolini G; Livi L; Pallotta S
    J Appl Clin Med Phys; 2020 Dec; 21(12):219-230. PubMed ID: 33236827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiac atlas development and validation for automatic segmentation of cardiac substructures.
    Zhou R; Liao Z; Pan T; Milgrom SA; Pinnix CC; Shi A; Tang L; Yang J; Liu Y; Gomez D; Nguyen QN; Dabaja BS; Court L; Yang J
    Radiother Oncol; 2017 Jan; 122(1):66-71. PubMed ID: 27939201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-world validation of Artificial Intelligence-based Computed Tomography auto-contouring for prostate cancer radiotherapy planning.
    Palazzo G; Mangili P; Deantoni C; Fodor A; Broggi S; Castriconi R; Ubeira Gabellini MG; Del Vecchio A; Di Muzio NG; Fiorino C
    Phys Imaging Radiat Oncol; 2023 Oct; 28():100501. PubMed ID: 37920450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the clinical acceptability of deep learning contours of prostate and organs-at-risk in an automated prostate treatment planning process.
    Duan J; Bernard M; Downes L; Willows B; Feng X; Mourad WF; St Clair W; Chen Q
    Med Phys; 2022 Apr; 49(4):2570-2581. PubMed ID: 35147216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human factors in the clinical implementation of deep learning-based automated contouring of pelvic organs at risk for MRI-guided radiotherapy.
    Abdulkadir Y; Luximon D; Morris E; Chow P; Kishan AU; Mikaeilian A; Lamb JM
    Med Phys; 2023 Oct; 50(10):5969-5977. PubMed ID: 37646527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a commercial DIR platform for contour propagation in prostate cancer patients treated with IMRT/VMAT.
    Hammers JE; Pirozzi S; Lindsay D; Kaidar-Person O; Tan X; Chen RC; Das SK; Mavroidis P
    J Appl Clin Med Phys; 2020 Feb; 21(2):14-25. PubMed ID: 32058663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical Evaluation of Deep Learning and Atlas-Based Auto-Contouring of Bladder and Rectum for Prostate Radiation Therapy.
    Zabel WJ; Conway JL; Gladwish A; Skliarenko J; Didiodato G; Goorts-Matthews L; Michalak A; Reistetter S; King J; Nakonechny K; Malkoske K; Tran MN; McVicar N
    Pract Radiat Oncol; 2021; 11(1):e80-e89. PubMed ID: 32599279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical clustering applied to automatic atlas based segmentation of 25 cardiac sub-structures.
    Maffei N; Fiorini L; Aluisio G; D'Angelo E; Ferrazza P; Vanoni V; Lohr F; Meduri B; Guidi G
    Phys Med; 2020 Jan; 69():70-80. PubMed ID: 31835189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer.
    Ahn SH; Yeo AU; Kim KH; Kim C; Goh Y; Cho S; Lee SB; Lim YK; Kim H; Shin D; Kim T; Kim TH; Youn SH; Oh ES; Jeong JH
    Radiat Oncol; 2019 Nov; 14(1):213. PubMed ID: 31775825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-observer contouring of male pelvic anatomy: Highly variable agreement across conventional and emerging structures of interest.
    Roach D; Holloway LC; Jameson MG; Dowling JA; Kennedy A; Greer PB; Krawiec M; Rai R; Denham J; De Leon J; Lim K; Berry ME; White RT; Bydder SA; Tan HT; Croker JD; McGrath A; Matthews J; Smeenk RJ; Ebert MA
    J Med Imaging Radiat Oncol; 2019 Apr; 63(2):264-271. PubMed ID: 30609205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Augmenting atlas-based liver segmentation for radiotherapy treatment planning by incorporating image features proximal to the atlas contours.
    Li D; Liu L; Chen J; Li H; Yin Y; Ibragimov B; Xing L
    Phys Med Biol; 2017 Jan; 62(1):272-288. PubMed ID: 27991439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of automatic atlas-based lymph node segmentation for head-and-neck cancer.
    Stapleford LJ; Lawson JD; Perkins C; Edelman S; Davis L; McDonald MW; Waller A; Schreibmann E; Fox T
    Int J Radiat Oncol Biol Phys; 2010 Jul; 77(3):959-66. PubMed ID: 20231069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of commercial atlas-based automatic segmentation software for prostate radiotherapy treatment planning.
    Hizam DA; Tan LK; Saad M; Muaadz A; Ung NM
    Phys Eng Sci Med; 2024 Apr; ():. PubMed ID: 38647633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical validation of atlas-based auto-segmentation of pelvic volumes and normal tissue in rectal tumors using auto-segmentation computed system.
    Gambacorta MA; Valentini C; Dinapoli N; Boldrini L; Caria N; Barba MC; Mattiucci GC; Pasini D; Minsky B; Valentini V
    Acta Oncol; 2013 Nov; 52(8):1676-81. PubMed ID: 23336255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contouring cardiac substructures on average intensity projection 4D-CT for lung cancer radiotherapy: A proposal of a heart valve contouring atlas.
    Socha J; Rygielska A; Uziębło-Życzkowska B; Chałubińska-Fendler J; Jurek A; Maciorowska M; Mielniczuk M; Pawłowski P; Tyc-Szczepaniak D; Krzesiński P; Kepka L
    Radiother Oncol; 2022 Feb; 167():261-268. PubMed ID: 34990727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical evaluation of deep learning and atlas-based auto-segmentation for critical organs at risk in radiation therapy.
    Gibbons E; Hoffmann M; Westhuyzen J; Hodgson A; Chick B; Last A
    J Med Radiat Sci; 2023 Apr; 70 Suppl 2(Suppl 2):15-25. PubMed ID: 36148621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of a Magnetic Resonance Imaging-based Auto-contouring Software Tool for Gross Tumour Delineation in Head and Neck Cancer Radiotherapy Planning.
    Doshi T; Wilson C; Paterson C; Lamb C; James A; MacKenzie K; Soraghan J; Petropoulakis L; Di Caterina G; Grose D
    Clin Oncol (R Coll Radiol); 2017 Jan; 29(1):60-67. PubMed ID: 27780693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery.
    Chung SY; Chang JS; Choi MS; Chang Y; Choi BS; Chun J; Keum KC; Kim JS; Kim YB
    Radiat Oncol; 2021 Feb; 16(1):44. PubMed ID: 33632248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.