These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35064755)

  • 1. Perspectives on Working Voltage of Aqueous Supercapacitors.
    Guo T; Zhou D; Pang L; Sun S; Zhou T; Su J
    Small; 2022 Apr; 18(16):e2106360. PubMed ID: 35064755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances on Boosting the Cell Voltage of Aqueous Supercapacitors.
    Gou Q; Zhao S; Wang J; Li M; Xue J
    Nanomicro Lett; 2020 Apr; 12(1):98. PubMed ID: 34138080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Water-in-Salt" Electrolytes for Supercapacitors: A Review.
    Tian X; Zhu Q; Xu B
    ChemSusChem; 2021 Jun; 14(12):2501-2515. PubMed ID: 33830655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox-Driven Route for Widening Voltage Window in Asymmetric Supercapacitor.
    Sahoo R; Pham DT; Lee TH; Luu THT; Seok J; Lee YH
    ACS Nano; 2018 Aug; 12(8):8494-8505. PubMed ID: 30044606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Voltage MXene-Based Supercapacitors: Present Status and Future Perspectives.
    Zhu Y; Ma J; Das P; Wang S; Wu ZS
    Small Methods; 2023 Aug; 7(8):e2201609. PubMed ID: 36703554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New Insights into the Operating Voltage of Aqueous Supercapacitors.
    Yu M; Lu Y; Zheng H; Lu X
    Chemistry; 2018 Mar; 24(15):3639-3649. PubMed ID: 29024125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Energy-Density Hydrogen-Ion-Rocking-Chair Hybrid Supercapacitors Based on Ti
    Hu M; Cui C; Shi C; Wu ZS; Yang J; Cheng R; Guang T; Wang H; Lu H; Wang X
    ACS Nano; 2019 Jun; 13(6):6899-6905. PubMed ID: 31100003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting the Energy Density of Carbon-Based Aqueous Supercapacitors by Optimizing the Surface Charge.
    Yu M; Lin D; Feng H; Zeng Y; Tong Y; Lu X
    Angew Chem Int Ed Engl; 2017 May; 56(20):5454-5459. PubMed ID: 28345296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dilute Aqueous-Aprotic Electrolyte Towards Robust Zn-Ion Hybrid Supercapacitor with High Operation Voltage and Long Lifespan.
    Wu S; Yang Y; Sun M; Zhang T; Huang S; Zhang D; Huang B; Wang P; Zhang W
    Nanomicro Lett; 2024 Mar; 16(1):161. PubMed ID: 38526682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogen-Doped Multi-Scale Porous Carbon for High Voltage Aqueous Supercapacitors.
    Liu X; Mi R; Yuan L; Yang F; Fu Z; Wang C; Tang Y
    Front Chem; 2018; 6():475. PubMed ID: 30386768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrode Surface-Modified Strategy for Improving the Voltage of Aqueous Supercapacitors.
    Huang S; Du X; Guo Y; Liang Z; Ma M; Sun X; Xiong L
    Small; 2024 May; 20(21):e2306867. PubMed ID: 38085130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Mechanisms of Asymmetric Supercapacitors.
    Shao Y; El-Kady MF; Sun J; Li Y; Zhang Q; Zhu M; Wang H; Dunn B; Kaner RB
    Chem Rev; 2018 Sep; 118(18):9233-9280. PubMed ID: 30204424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell voltage versus electrode potential range in aqueous supercapacitors.
    Dai Z; Peng C; Chae JH; Ng KC; Chen GZ
    Sci Rep; 2015 Apr; 5():9854. PubMed ID: 25897670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Phase-Transformation Activation Process toward Ni-Mn-O Nanoprism Arrays for 2.4 V Ultrahigh-Voltage Aqueous Supercapacitors.
    Zuo W; Xie C; Xu P; Li Y; Liu J
    Adv Mater; 2017 Sep; 29(36):. PubMed ID: 28783217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon nanofibers with radially grown graphene sheets derived from electrospinning for aqueous supercapacitors with high working voltage and energy density.
    Zhao L; Qiu Y; Yu J; Deng X; Dai C; Bai X
    Nanoscale; 2013 Jun; 5(11):4902-9. PubMed ID: 23624805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic regulation of MXene with water-in-LiCl electrolyte for high-voltage micro-supercapacitors.
    Zhu Y; Zheng S; Lu P; Ma J; Das P; Su F; Cheng HM; Wu ZS
    Natl Sci Rev; 2022 Jul; 9(7):nwac024. PubMed ID: 35854784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the Carbon/Electrolyte Interface in Supercapacitors Operating in Highly Concentrated Aqueous Electrolytes.
    Neto C; Pham HTT; Omnée R; Canizarès A; Slodczyk A; Deschamps M; Raymundo-Piñero E
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44405-44418. PubMed ID: 36150165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular-induced 2.40 V 130 °C working-temperature-range supercapacitor aqueous electrolyte of lithium bis(trifluoromethanesulfonyl) imide in dimethyl sulfoxide-water.
    Tang C; Li M; Du J; Wang Y; Zhang Y; Wang G; Shi X; Li Y; Liu J; Lian C; Li L
    J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1162-1172. PubMed ID: 34735852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2.4 V ultrahigh-voltage aqueous MXene-based asymmetric micro-supercapacitors with high volumetric energy density toward a self-sufficient integrated microsystem.
    Zhu Y; Zheng S; Qin J; Ma J; Das P; Zhou F; Wu ZS
    Fundam Res; 2024 Mar; 4(2):307-314. PubMed ID: 38933500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance 2.6 V Aqueous Asymmetric Supercapacitors based on In Situ Formed Na
    Jabeen N; Hussain A; Xia Q; Sun S; Zhu J; Xia H
    Adv Mater; 2017 Aug; 29(32):. PubMed ID: 28639392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.