These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35064891)

  • 1. Two Filtering Methods of Forecasting Linear and Nonlinear Dynamics of Intensive Longitudinal Data.
    Hunter MD; Fatimah H; Bornovalova MA
    Psychometrika; 2022 Jun; 87(2):477-505. PubMed ID: 35064891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ensemble
    Chowell G; Dahal S; Tariq A; Roosa K; Hyman JM; Luo R
    medRxiv; 2022 Jun; ():. PubMed ID: 35794886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ensemble n-sub-epidemic modeling framework for short-term forecasting epidemic trajectories: Application to the COVID-19 pandemic in the USA.
    Chowell G; Dahal S; Tariq A; Roosa K; Hyman JM; Luo R
    PLoS Comput Biol; 2022 Oct; 18(10):e1010602. PubMed ID: 36201534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the predictability of nonlinear dynamics under smooth parameter changes.
    Cenci S; Medeiros LP; Sugihara G; Saavedra S
    J R Soc Interface; 2020 Jan; 17(162):20190627. PubMed ID: 31964271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forecasting Intra-individual Changes of Affective States Taking into Account Inter-individual Differences Using Intensive Longitudinal Data from a University Student Dropout Study in Math.
    Kelava A; Kilian P; Glaesser J; Merk S; Brandt H
    Psychometrika; 2022 Jun; 87(2):533-558. PubMed ID: 35366146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics identification and forecasting of COVID-19 by switching Kalman filters.
    Zeng X; Ghanem R
    Comput Mech; 2020; 66(5):1179-1193. PubMed ID: 32904528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interpretable physiological forecasting in the ICU using constrained data assimilation and electronic health record data.
    Albers D; Sirlanci M; Levine M; Claassen J; Nigoghossian C; Hripcsak G
    J Biomed Inform; 2023 Sep; 145():104477. PubMed ID: 37604272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating New Quantities from Longitudinal Test Scores to Improve Forecasts of Future Performance.
    McNeish D; Dumas DG; Grimm KJ
    Multivariate Behav Res; 2020; 55(6):894-909. PubMed ID: 31749386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ensemble data assimilation methods for improving river water quality forecasting accuracy.
    Loos S; Shin CM; Sumihar J; Kim K; Cho J; Weerts AH
    Water Res; 2020 Mar; 171():115343. PubMed ID: 31918389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probabilistic evaluation of time series models: a comparison of several approaches.
    Bröcker J; Engster D; Parlitz U
    Chaos; 2009 Dec; 19(4):043130. PubMed ID: 20059226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the accuracy of short-term COVID-19 fatality forecasts.
    Antulov-Fantulin N; Böttcher L
    BMC Infect Dis; 2022 Mar; 22(1):251. PubMed ID: 35287605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parameter estimation through ignorance.
    Du H; Smith LA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016213. PubMed ID: 23005513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple modeling framework for prediction in the human glucose-insulin system.
    Sirlanci M; Levine ME; Low Wang CC; Albers DJ; Stuart AM
    Chaos; 2023 Jul; 33(7):. PubMed ID: 37486667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Affective forecasting as an adaptive learning process.
    Takano K; Ehring T
    Emotion; 2024 Apr; 24(3):795-807. PubMed ID: 37824221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assimilation of multiple data sets with the ensemble Kalman filter to improve forecasts of forest carbon dynamics.
    Gao C; Wang H; Weng E; Lakshmivarahan S; Zhang Y; Luo Y
    Ecol Appl; 2011 Jul; 21(5):1461-73. PubMed ID: 21830695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How New Mexico Leveraged a COVID-19 Case Forecasting Model to Preemptively Address the Health Care Needs of the State: Quantitative Analysis.
    Castro LA; Shelley CD; Osthus D; Michaud I; Mitchell J; Manore CA; Del Valle SY
    JMIR Public Health Surveill; 2021 Jun; 7(6):e27888. PubMed ID: 34003763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forecasting Corn Yield With Machine Learning Ensembles.
    Shahhosseini M; Hu G; Archontoulis SV
    Front Plant Sci; 2020; 11():1120. PubMed ID: 32849688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive forecasting of phytoplankton communities.
    Page T; Smith PJ; Beven KJ; Jones ID; Elliott JA; Maberly SC; Mackay EB; De Ville M; Feuchtmayr H
    Water Res; 2018 May; 134():74-85. PubMed ID: 29407653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assimilating flow and level data into an urban drainage surrogate model for forecasting flows and overflows.
    S V Lund N; Madsen H; Mazzoleni M; Solomatine D; Borup M
    J Environ Manage; 2019 Oct; 248():109052. PubMed ID: 31466185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the added value of multi-input atmospheric transport ensemble modeling for applications of the Comprehensive Nuclear Test-Ban Treaty organization (CTBTO).
    Maurer C; Arias DA; Brioude J; Haselsteiner M; Weidle F; Haimberger L; Skomorowski P; Bourgouin P
    J Environ Radioact; 2021 Oct; 237():106649. PubMed ID: 34118614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.