These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 35065075)
1. Proteomics, phylogenetics, and coexpression analyses indicate novel interactions in the plastid CLP chaperone-protease system. Rei Liao JY; Friso G; Forsythe ES; Michel EJS; Williams AM; Boguraev SS; Ponnala L; Sloan DB; van Wijk KJ J Biol Chem; 2022 Mar; 298(3):101609. PubMed ID: 35065075 [TBL] [Abstract][Full Text] [Related]
2. In Vivo Trapping of Proteins Interacting with the Chloroplast CLPC1 Chaperone: Potential Substrates and Adaptors. Montandon C; Friso G; Liao JR; Choi J; van Wijk KJ J Proteome Res; 2019 Jun; 18(6):2585-2600. PubMed ID: 31070379 [TBL] [Abstract][Full Text] [Related]
3. ClpS1 is a conserved substrate selector for the chloroplast Clp protease system in Arabidopsis. Nishimura K; Asakura Y; Friso G; Kim J; Oh SH; Rutschow H; Ponnala L; van Wijk KJ Plant Cell; 2013 Jun; 25(6):2276-301. PubMed ID: 23898032 [TBL] [Abstract][Full Text] [Related]
4. The chloroplast protease system degrades stromal DUF760-1 and DUF760-2 domain-containing proteins at different rates. Yuan B; van Wijk KJ Plant Physiol; 2024 Nov; 196(3):1788-1801. PubMed ID: 39155062 [TBL] [Abstract][Full Text] [Related]
5. Specific Hsp100 Chaperones Determine the Fate of the First Enzyme of the Plastidial Isoprenoid Pathway for Either Refolding or Degradation by the Stromal Clp Protease in Arabidopsis. Pulido P; Llamas E; Llorente B; Ventura S; Wright LP; Rodríguez-Concepción M PLoS Genet; 2016 Jan; 12(1):e1005824. PubMed ID: 26815787 [TBL] [Abstract][Full Text] [Related]
6. Quantitative analysis of the chloroplast molecular chaperone ClpC/Hsp93 in Arabidopsis reveals new insights into its localization, interaction with the Clp proteolytic core, and functional importance. Sjögren LLE; Tanabe N; Lymperopoulos P; Khan NZ; Rodermel SR; Aronsson H; Clarke AK J Biol Chem; 2014 Apr; 289(16):11318-11330. PubMed ID: 24599948 [TBL] [Abstract][Full Text] [Related]
7. The CLP and PREP protease systems coordinate maturation and degradation of the chloroplast proteome in Arabidopsis thaliana. Rowland E; Kim J; Friso G; Poliakov A; Ponnala L; Sun Q; van Wijk KJ New Phytol; 2022 Nov; 236(4):1339-1357. PubMed ID: 35946374 [TBL] [Abstract][Full Text] [Related]
8. Recombinant expression, purification and SAXS analysis of Arabidopsis thaliana ClpC1. Jagdev MK; Dandapat J; Vasudevan D Int J Biol Macromol; 2021 Jan; 167():1273-1280. PubMed ID: 33189753 [TBL] [Abstract][Full Text] [Related]
9. Functional Analysis of the Hsp93/ClpC Chaperone at the Chloroplast Envelope. Flores-Pérez Ú; Bédard J; Tanabe N; Lymperopoulos P; Clarke AK; Jarvis P Plant Physiol; 2016 Jan; 170(1):147-62. PubMed ID: 26586836 [TBL] [Abstract][Full Text] [Related]
10. The caseinolytic protease complex component CLPC1 in Arabidopsis maintains proteome and RNA homeostasis in chloroplasts. Zhang S; Zhang H; Xia Y; Xiong L BMC Plant Biol; 2018 Sep; 18(1):192. PubMed ID: 30208840 [TBL] [Abstract][Full Text] [Related]
11. Mutant noxy8 exposes functional specificities between the chloroplast chaperones CLPC1 and CLPC2 in the response to organelle stress and plant defence. López B; Izquierdo Y; Cascón T; Zamarreño ÁM; García-Mina JM; Pulido P; Castresana C Plant Cell Environ; 2024 Jul; 47(7):2336-2350. PubMed ID: 38500380 [TBL] [Abstract][Full Text] [Related]
12. Clp Protease and OR Directly Control the Proteostasis of Phytoene Synthase, the Crucial Enzyme for Carotenoid Biosynthesis in Arabidopsis. Welsch R; Zhou X; Yuan H; Álvarez D; Sun T; Schlossarek D; Yang Y; Shen G; Zhang H; Rodriguez-Concepcion M; Thannhauser TW; Li L Mol Plant; 2018 Jan; 11(1):149-162. PubMed ID: 29155321 [TBL] [Abstract][Full Text] [Related]
13. Control of Retrograde Signaling by Rapid Turnover of GENOMES UNCOUPLED1. Wu GZ; Chalvin C; Hoelscher M; Meyer EH; Wu XN; Bock R Plant Physiol; 2018 Mar; 176(3):2472-2495. PubMed ID: 29367233 [TBL] [Abstract][Full Text] [Related]
14. Crystal structures reveal N-terminal Domain of Arabidopsis thaliana ClpD to be highly divergent from that of ClpC1. Mohapatra C; Kumar Jagdev M; Vasudevan D Sci Rep; 2017 Mar; 7():44366. PubMed ID: 28287170 [TBL] [Abstract][Full Text] [Related]
15. Modified Clp protease complex in the ClpP3 null mutant and consequences for chloroplast development and function in Arabidopsis. Kim J; Olinares PD; Oh SH; Ghisaura S; Poliakov A; Ponnala L; van Wijk KJ Plant Physiol; 2013 May; 162(1):157-79. PubMed ID: 23548781 [TBL] [Abstract][Full Text] [Related]
16. Identification of new protein substrates for the chloroplast ATP-dependent Clp protease supports its constitutive role in Arabidopsis. Stanne TM; Sjögren LL; Koussevitzky S; Clarke AK Biochem J; 2009 Jan; 417(1):257-68. PubMed ID: 18754756 [TBL] [Abstract][Full Text] [Related]
17. Discovery of a Unique Clp Component, ClpF, in Chloroplasts: A Proposed Binary ClpF-ClpS1 Adaptor Complex Functions in Substrate Recognition and Delivery. Nishimura K; Apitz J; Friso G; Kim J; Ponnala L; Grimm B; van Wijk KJ Plant Cell; 2015 Oct; 27(10):2677-91. PubMed ID: 26419670 [TBL] [Abstract][Full Text] [Related]
18. Structure, function, and substrates of Clp AAA+ protease systems in cyanobacteria, plastids, and apicoplasts: A comparative analysis. Bouchnak I; van Wijk KJ J Biol Chem; 2021; 296():100338. PubMed ID: 33497624 [TBL] [Abstract][Full Text] [Related]
19. Large scale comparative proteomics of a chloroplast Clp protease mutant reveals folding stress, altered protein homeostasis, and feedback regulation of metabolism. Zybailov B; Friso G; Kim J; Rudella A; Rodríguez VR; Asakura Y; Sun Q; van Wijk KJ Mol Cell Proteomics; 2009 Aug; 8(8):1789-1810. PubMed ID: 19423572 [TBL] [Abstract][Full Text] [Related]
20. The Clp protease system; a central component of the chloroplast protease network. Olinares PD; Kim J; van Wijk KJ Biochim Biophys Acta; 2011 Aug; 1807(8):999-1011. PubMed ID: 21167127 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]