These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35065312)

  • 1. Transport of silver nanoparticles coated with polyvinylpyrrolidone of various molecular sizes in porous media: Interplay of polymeric coatings and chemically heterogeneous surfaces.
    Wang K; Ma Y; Sun B; Yang Y; Zhang Y; Zhu L
    J Hazard Mater; 2022 May; 429():128247. PubMed ID: 35065312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New insights into the enhanced transport of uncoated and polyvinylpyrrolidone-coated silver nanoparticles in saturated porous media by dissolved black carbons.
    Wang K; Zhang Y; Sun B; Yang Y; Xiao B; Zhu L
    Chemosphere; 2021 Nov; 283():131159. PubMed ID: 34144287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of natural organic matter on transport and retention of polymer coated silver nanoparticles in porous media.
    Yang X; Lin S; Wiesner MR
    J Hazard Mater; 2014 Jan; 264():161-8. PubMed ID: 24295767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Key factors controlling the transport of silver nanoparticles in porous media.
    El Badawy AM; Hassan AA; Scheckel KG; Suidan MT; Tolaymat TM
    Environ Sci Technol; 2013 May; 47(9):4039-45. PubMed ID: 23521179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport, retention, and long-term release behavior of polymer-coated silver nanoparticles in saturated quartz sand: The impact of natural organic matters and electrolyte.
    Hou J; Zhang M; Wang P; Wang C; Miao L; Xu Y; You G; Lv B; Yang Y; Liu Z
    Environ Pollut; 2017 Oct; 229():49-59. PubMed ID: 28577382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport and long-term release behavior of polymer-coated silver nanoparticles in saturated quartz sand: The impacts of input concentration, grain size and flow rate.
    Hou J; Zhang M; Wang P; Wang C; Miao L; Xu Y; You G; Lv B; Yang Y; Liu Z
    Water Res; 2017 Dec; 127():86-95. PubMed ID: 29035769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol.
    Wang D; Ge L; He J; Zhang W; Jaisi DP; Zhou D
    J Contam Hydrol; 2014 Aug; 164():35-48. PubMed ID: 24926609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the effects of surfactant, hardness, and natural organic matter on deposition and mobility of silver nanoparticles in saturated porous media.
    Park CM; Heo J; Her N; Chu KH; Jang M; Yoon Y
    Water Res; 2016 Oct; 103():38-47. PubMed ID: 27429353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined effects of ferrihydrite coating and ionic type on the transport of compost-derived dissolved organic matter in saturated porous media.
    Miao C; Zhou H; Lv Y; Shang J; Mamut A
    Environ Pollut; 2022 Aug; 307():119501. PubMed ID: 35636713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracking the Transport of Silver Nanoparticles in Soil: a Saturated Column Experiment.
    Mahdi KNM; Peters R; van der Ploeg M; Ritsema C; Geissen V
    Water Air Soil Pollut; 2018; 229(10):334. PubMed ID: 30416217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic matter induced mobilization of polymer-coated silver nanoparticles from water-saturated sand.
    Yang X; Yin Z; Chen F; Hu J; Yang Y
    Sci Total Environ; 2015 Oct; 529():182-90. PubMed ID: 26011614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport and retention of functionalized graphene oxide nanoparticles in saturated/unsaturated porous media: Effects of flow velocity, ionic strength and initial particle concentration.
    Shahi M; Alavi Moghaddam MR; Hosseini SM; Hashemi H; Persson M; Kowsari E
    Chemosphere; 2024 Apr; 354():141714. PubMed ID: 38521106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymeric coatings on silver nanoparticles hinder autoaggregation but enhance attachment to uncoated surfaces.
    Lin S; Cheng Y; Liu J; Wiesner MR
    Langmuir; 2012 Mar; 28(9):4178-86. PubMed ID: 22242766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic-strength-dependent effect of suspended sediment on the aggregation, dissolution and settling of silver nanoparticles.
    Zhao J; Li Y; Wang X; Xia X; Shang E; Ali J
    Environ Pollut; 2021 Jun; 279():116926. PubMed ID: 33751945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visible-light reduced silver nanoparticles' toxicity in Allium cepa test system.
    Souza IR; Silva LR; Fernandes LSP; Salgado LD; Silva de Assis HC; Firak DS; Bach L; Santos-Filho R; Voigt CL; Barros AC; Peralta-Zamora P; Mattoso N; Franco CRC; Soares Medeiros LC; Marcon BH; Cestari MM; Sant'Anna-Santos BF; Leme DM
    Environ Pollut; 2020 Feb; 257():113551. PubMed ID: 31801672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for the critical role of nanoscale surface roughness on the retention and release of silver nanoparticles in porous media.
    Liang Y; Zhou J; Dong Y; Klumpp E; Šimůnek J; Bradford SA
    Environ Pollut; 2020 Mar; 258():113803. PubMed ID: 31864922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retention and remobilization of stabilized silver nanoparticles in an undisturbed loamy sand soil.
    Liang Y; Bradford SA; Simunek J; Heggen M; Vereecken H; Klumpp E
    Environ Sci Technol; 2013; 47(21):12229-37. PubMed ID: 24106877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport and retention of engineered silver nanoparticles in carbonate-rich sediments in the presence and absence of soil organic matter.
    Adrian YF; Schneidewind U; Bradford SA; Šimůnek J; Klumpp E; Azzam R
    Environ Pollut; 2019 Dec; 255(Pt 1):113124. PubMed ID: 31622956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of industrial PVP-stabilized silver nanoparticles in saturated quartz sand coated with Pseudomonas aeruginosa PAO1 biofilm of variable age.
    Mitzel MR; Tufenkji N
    Environ Sci Technol; 2014; 48(5):2715-23. PubMed ID: 24552618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of surface coating and environmental conditions on the fate and transport of silver nanoparticles in the aquatic environment.
    Ellis LA; Valsami-Jones E; Lead JR; Baalousha M
    Sci Total Environ; 2016 Oct; 568():95-106. PubMed ID: 27289392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.