BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 35065460)

  • 1. Targeting GNAQ in hypothalamic nerve cells to regulate seasonal estrus in sheep.
    Zhu M; Zhang H; Yang H; Zhao Z; Blair HT; Liang H; Wu P; Yu Q
    Theriogenology; 2022 Mar; 181():79-88. PubMed ID: 35065460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of GNAQ methylation on GnRH secretion in sheep hypothalamic neurons.
    Zhai M; Zhao Z; Yang M; Liang Y; Liang H; Xie Y; Han J
    J Cell Biochem; 2019 Dec; 120(12):19396-19405. PubMed ID: 31452255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoperiod Induces the Epigenetic Change of the
    Wang W; Du X; Chu M; He X
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GnRH Neuron-Specific Ablation of Gαq/11 Results in Only Partial Inactivation of the Neuroendocrine-Reproductive Axis in Both Male and Female Mice: In Vivo Evidence for Kiss1r-Coupled Gαq/11-Independent GnRH Secretion.
    Babwah AV; Navarro VM; Ahow M; Pampillo M; Nash C; Fayazi M; Calder M; Elbert A; Urbanski HF; Wettschureck N; Offermanns S; Carroll RS; Bhattacharya M; Tobet SA; Kaiser UB
    J Neurosci; 2015 Sep; 35(37):12903-16. PubMed ID: 26377475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a promoter element mediating kisspeptin-induced increases in GnRH gene expression in sheep.
    Li Z; Guo R; Gu Z; Wang X; Wang Y; Xu H; Wang C; Liu X
    Gene; 2019 May; 699():1-7. PubMed ID: 30853631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Analysis and Identification of Differentially Expressed microRNAs in the Hypothalamus of Kazakh Sheep Exposed to Different Photoperiod Conditions.
    Yang H; Fu L; Luo Q; Li L; Zheng F; Liu X; Zhao Z; Wang Z; Xu H
    Biochemistry (Mosc); 2021 Oct; 86(10):1315-1325. PubMed ID: 34903161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sex steroid control of hypothalamic Kiss1 expression in sheep and rodents: comparative aspects.
    Smith JT
    Peptides; 2009 Jan; 30(1):94-102. PubMed ID: 18789989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutual interaction of kisspeptin, estrogen and bone morphogenetic protein-4 activity in GnRH regulation by GT1-7 cells.
    Terasaka T; Otsuka F; Tsukamoto N; Nakamura E; Inagaki K; Toma K; Ogura-Ochi K; Glidewell-Kenney C; Lawson MA; Makino H
    Mol Cell Endocrinol; 2013 Dec; 381(1-2):8-15. PubMed ID: 23880664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of a functional g protein-coupled receptor 54-kisspeptin autoregulatory system in hypothalamic gonadotropin-releasing hormone neurons.
    Quaynor S; Hu L; Leung PK; Feng H; Mores N; Krsmanovic LZ; Catt KJ
    Mol Endocrinol; 2007 Dec; 21(12):3062-70. PubMed ID: 17698953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kisspeptin signalling in the brain: steroid regulation in the rodent and ewe.
    Smith JT
    Brain Res Rev; 2008 Mar; 57(2):288-98. PubMed ID: 17509691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seasonal variation in the gonadotropin-releasing hormone response to kisspeptin in sheep: possible kisspeptin regulation of the kisspeptin receptor.
    Li Q; Roa A; Clarke IJ; Smith JT
    Neuroendocrinology; 2012; 96(3):212-21. PubMed ID: 22343304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GPR54 and kisspeptins.
    Colledge WH
    Results Probl Cell Differ; 2008; 46():117-43. PubMed ID: 18193176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gonadotropin-releasing hormone, kisspeptin, and gonadal steroids directly modulate nucleobindin-2/nesfatin-1 in murine hypothalamic gonadotropin-releasing hormone neurons and gonadotropes.
    Hatef A; Unniappan S
    Biol Reprod; 2017 Mar; 96(3):635-651. PubMed ID: 28339602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of corticotropin releasing hormone and corticotropin releasing hormone antagonist on biosynthesis of gonadotropin relasing hormone and gonadotropin relasing hormone receptor in the hypothalamic-pituitary unit of follicular-phase ewes and contribution of kisspeptin.
    Ciechanowska M; Kowalczyk M; Lapot M; Malewski T; Antkowiak B; Brytan M; Winnicka I; Przekop F
    J Physiol Pharmacol; 2018 Jun; 69(3):. PubMed ID: 30342430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54.
    Messager S; Chatzidaki EE; Ma D; Hendrick AG; Zahn D; Dixon J; Thresher RR; Malinge I; Lomet D; Carlton MB; Colledge WH; Caraty A; Aparicio SA
    Proc Natl Acad Sci U S A; 2005 Feb; 102(5):1761-6. PubMed ID: 15665093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prepubertal exposure to an oestrogenic mycotoxin zearalenone induces central precocious puberty in immature female rats through the mechanism of premature activation of hypothalamic kisspeptin-GPR54 signaling.
    Yang R; Wang YM; Zhang L; Zhao ZM; Zhao J; Peng SQ
    Mol Cell Endocrinol; 2016 Dec; 437():62-74. PubMed ID: 27519634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphometric and Myelin Basic Protein Expression Changes in Arcuate Nucleus Kisspeptin Neurons Underlie Activation of Hypothalamic Pituitary Gonadal-axis in Monkeys (
    Zubair H; Shamas S; Ullah H; Nabi G; Huma T; Ullah R; Hussain R; Shahab M
    Endocr Res; 2022; 47(3-4):113-123. PubMed ID: 35866239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of kisspeptin and gonadotropin inhibitory hormone in the seasonal regulation of reproduction in sheep.
    Smith JT
    Domest Anim Endocrinol; 2012 Aug; 43(2):75-84. PubMed ID: 22177698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of gonadotropin-inhibitory hormone receptors in mouse pituitary gonadotroph LβT2 cells and hypothalamic gonadotropin-releasing hormone-producing GT1-7 cells.
    Sukhbaatar U; Kanasaki H; Mijiddorj T; Oride A; Miyazaki K
    Endocr J; 2014; 61(1):25-34. PubMed ID: 24088662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The roles of kisspeptin in the mechanism underlying reproductive functions in mammals.
    Uenoyama Y; Inoue N; Maeda KI; Tsukamura H
    J Reprod Dev; 2018 Dec; 64(6):469-476. PubMed ID: 30298825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.