These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 35065463)

  • 1. Binary mixture droplet wetting on micro-structure decorated surfaces.
    Al Balushi KM; Sefiane K; Orejon D
    J Colloid Interface Sci; 2022 Apr; 612():792-805. PubMed ID: 35065463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binary Mixture Droplet Evaporation on Microstructured Decorated Surfaces and the Mixed Stick-Slip Modes.
    Al Balushi KM; Duursma G; Valluri P; Sefiane K; Orejon D
    Langmuir; 2023 Jun; 39(23):8323-8338. PubMed ID: 37272784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition.
    Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE
    Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capillary origami: superhydrophobic ribbon surfaces and liquid marbles.
    McHale G; Newton MI; Shirtcliffe NJ; Geraldi NR
    Beilstein J Nanotechnol; 2011; 2():145-51. PubMed ID: 21977426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces.
    Zheng QS; Yu Y; Zhao ZH
    Langmuir; 2005 Dec; 21(26):12207-12. PubMed ID: 16342993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures.
    Mishra H; Schrader AM; Lee DW; Gallo A; Chen SY; Kaufman Y; Das S; Israelachvili JN
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8168-74. PubMed ID: 26709928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the wettability of rough surfaces using simultaneous optical and electrochemical analysis of sessile droplets.
    Zahiri B; Sow PK; Kung CH; Mérida W
    J Colloid Interface Sci; 2017 Sep; 501():34-44. PubMed ID: 28433883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wetting of binary powder mixtures.
    Mundozah AL; Tridon CC; Cartwright JJ; Salman AD; Hounslow MJ
    Int J Pharm; 2019 Dec; 572():118770. PubMed ID: 31669215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wetting Dynamics of a Water Droplet on Micropillar Surfaces with Radially Varying Pitches.
    Kumar M; Bhardwaj R; Sahu KC
    Langmuir; 2020 May; 36(19):5312-5323. PubMed ID: 32356997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apparent contact angles for reactive wetting of smooth, rough, and heterogeneous surfaces calculated from the variational principles.
    Bormashenko E
    J Colloid Interface Sci; 2019 Mar; 537():597-603. PubMed ID: 30471614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wetting between Cassie-Baxter and Wenzel regimes: a cellular model approach.
    Mądry K; Nowicki W
    Eur Phys J E Soft Matter; 2021 Nov; 44(11):138. PubMed ID: 34786638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macroscopically flat and smooth superhydrophobic surfaces: heating induced wetting transitions up to the Leidenfrost temperature.
    Liu G; Craig VS
    Faraday Discuss; 2010; 146():141-51; discussion 195-215, 395-403. PubMed ID: 21043419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of geometrical characteristics of surface roughness on droplet wetting.
    Sheng YJ; Jiang S; Tsao HK
    J Chem Phys; 2007 Dec; 127(23):234704. PubMed ID: 18154406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wetting theory for small droplets on textured solid surfaces.
    Kim D; Pugno NM; Ryu S
    Sci Rep; 2016 Nov; 6():37813. PubMed ID: 27897194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces.
    Jung YC; Bhushan B
    J Microsc; 2008 Jan; 229(Pt 1):127-40. PubMed ID: 18173651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale.
    Leroy F; Müller-Plathe F
    Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wetting transition and optimal design for microstructured surfaces with hydrophobic and hydrophilic materials.
    Park CI; Jeong HE; Lee SH; Cho HS; Suh KY
    J Colloid Interface Sci; 2009 Aug; 336(1):298-303. PubMed ID: 19426991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interfacial energy in the Cassie-Baxter regime on the pyramid decorated solid surface.
    Nowicki W
    Eur Phys J E Soft Matter; 2019 Jul; 42(7):84. PubMed ID: 31267331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.