These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35065489)

  • 1. Detection of vinegar adulteration with spirit vinegar and acetic acid using UV-visible and Fourier transform infrared spectroscopy.
    Cavdaroglu C; Ozen B
    Food Chem; 2022 Jun; 379():132150. PubMed ID: 35065489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications of UV-Visible, Fluorescence and Mid-Infrared Spectroscopic Methods Combined with Chemometrics for the Authentication of Apple Vinegar.
    Cavdaroglu C; Ozen B
    Foods; 2023 Mar; 12(6):. PubMed ID: 36981065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FTIR spectroscopy for prediction of quality parameters and antimicrobial activity of commercial vinegars with chemometrics.
    Kadiroğlu P
    J Sci Food Agric; 2018 Aug; 98(11):4121-4127. PubMed ID: 29393512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid detection of adulteration of olive oil with soybean oil combined with chemometrics by Fourier transform infrared, visible-near-infrared and excitation-emission matrix fluorescence spectroscopy: A comparative study.
    Meng X; Yin C; Yuan L; Zhang Y; Ju Y; Xin K; Chen W; Lv K; Hu L
    Food Chem; 2023 Mar; 405(Pt A):134828. PubMed ID: 36370570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dietary supplement oil classification and detection of adulteration using Fourier transform infrared spectroscopy.
    Ozen BF; Weiss I; Mauer LJ
    J Agric Food Chem; 2003 Sep; 51(20):5871-6. PubMed ID: 13129287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectralprint techniques coupled with chemometric tools for vinegar classifications.
    Avanzi Barbosa Mascareli V; Galvan D; Craveiro de Andrade J; Lelis C; Adam Conte-Junior C; Michelino Gaeta Lopes G; César de Macedo Júnior F; Aparecida Spinosa W
    Food Chem; 2023 Jun; 410():135373. PubMed ID: 36608560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Analysis of the Stable Carbon Isotope Ratios of Acetoin and Acetic Acid by GC-C-IRMS for Adulteration Detection in Brewed Rice Vinegar Products.
    Fang CJ; You HC; Huang ZL; Hsu CL; Tsai CF; Lin YT; Kao YM; Tseng SH; Wang DY; Su NW
    J Agric Food Chem; 2020 Nov; ():. PubMed ID: 33215927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing saffron (Crocus sativus L.) adulteration with plant-derived adulterants by diffuse reflectance infrared Fourier transform spectroscopy coupled with chemometrics.
    Petrakis EA; Polissiou MG
    Talanta; 2017 Jan; 162():558-566. PubMed ID: 27837871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of quality the pumpkin, wild plum, pear, cabbage traditional homemade vinegars using the spectroscopy and rheology methods.
    Öztürk M
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Oct; 259():119896. PubMed ID: 33992894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chinese vinegar classification via volatiles using long-optical-path infrared spectroscopy and chemometrics.
    Dong D; Zheng W; Jiao L; Lang Y; Zhao X
    Food Chem; 2016 Mar; 194():95-100. PubMed ID: 26471531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initial study of honey adulteration by sugar solutions using midinfrared (MIR) spectroscopy and chemometrics.
    Kelly JF; Downey G; Fouratier V
    J Agric Food Chem; 2004 Jan; 52(1):33-9. PubMed ID: 14709010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of wine and alcohol vinegar samples based on near-infrared spectroscopy. Feasibility study on the detection of adulterated vinegar samples.
    Saiz-Abajo MJ; Gonzales-Saiz JM; Pizarro C
    J Agric Food Chem; 2004 Dec; 52(25):7711-9. PubMed ID: 15675824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin of the effects of optical spectrum and flow behaviour in determining the quality of dry fig, jujube, pomegranate, date palm and concentrated grape vinegars.
    Öztürk M; Yalçın O; Tekgündüz C; Tekgündüz E
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 270():120792. PubMed ID: 34990917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy in Combination with Multivariate Methods for the Rapid Determination of the Adulteration of Grape, Carob and Mulberry Pekmez.
    Yaman N; Durakli Velioglu S
    Foods; 2019 Jun; 8(7):. PubMed ID: 31261701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid authentication of concord juice concentration in a grape juice blend using Fourier-Transform infrared spectroscopy and chemometric analysis.
    Snyder AB; Sweeney CF; Rodriguez-Saona LE; Giusti MM
    Food Chem; 2014 Mar; 147():295-301. PubMed ID: 24206721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orthogonal signal correction applied to the classification of wine and molasses vinegar samples by near-infrared spectroscopy. Feasibility study for the detection and quantification of adulterated vinegar samples.
    Sáiz-Abajo MJ; González-Sáiz JM; Pizarro C
    Anal Bioanal Chem; 2005 May; 382(2):412-20. PubMed ID: 15864497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and quantification of industrial grade glycerol adulteration in red wine with fourier transform infrared spectroscopy using chemometrics and artificial neural networks.
    Dixit V; Tewari JC; Cho BK; Irudayaraj JM
    Appl Spectrosc; 2005 Dec; 59(12):1553-61. PubMed ID: 16390596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of mid-infrared spectroscopy with multivariate analysis and soft independent modeling of class analogies (SIMCA) for the detection of adulterants in minced beef.
    Meza-Márquez OG; Gallardo-Velázquez T; Osorio-Revilla G
    Meat Sci; 2010 Oct; 86(2):511-9. PubMed ID: 20598447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid detection of authenticity and adulteration of walnut oil by FTIR and fluorescence spectroscopy: a comparative study.
    Li B; Wang H; Zhao Q; Ouyang J; Wu Y
    Food Chem; 2015 Aug; 181():25-30. PubMed ID: 25794716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discrimination of some European vinegars with protected denomination of origin as a function of their amino acid and biogenic amine content.
    Chinnici F; Durán-Guerrero E; Riponi C
    J Sci Food Agric; 2016 Aug; 96(11):3762-71. PubMed ID: 26676828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.