BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35065574)

  • 1. Computing free energy barriers for the nucleation of complex network mesophases.
    Mukhtyar AJ; Escobedo FA
    J Chem Phys; 2022 Jan; 156(3):034502. PubMed ID: 35065574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Local Order Parameter-Based Method for Simulation of Free Energy Barriers in Crystal Nucleation.
    Eslami H; Khanjari N; Müller-Plathe F
    J Chem Theory Comput; 2017 Mar; 13(3):1307-1316. PubMed ID: 28195473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleation free-energy barriers with Hybrid Monte-Carlo/Umbrella Sampling.
    Gonzalez MA; Sanz E; McBride C; Abascal JL; Vega C; Valeriani C
    Phys Chem Chem Phys; 2014 Dec; 16(45):24913-9. PubMed ID: 25323418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vapor-to-droplet transition in a Lennard-Jones fluid: simulation study of nucleation barriers using the ghost field method.
    Neimark AV; Vishnyakov A
    J Phys Chem B; 2005 Mar; 109(12):5962-76. PubMed ID: 16851651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics and kinetics of bubble nucleation: simulation methodology.
    Meadley SL; Escobedo FA
    J Chem Phys; 2012 Aug; 137(7):074109. PubMed ID: 22920105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-step vapor-crystal nucleation close below triple point.
    van Meel JA; Page AJ; Sear RP; Frenkel D
    J Chem Phys; 2008 Nov; 129(20):204505. PubMed ID: 19045871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Following the nucleation pathway from disordered liquid to gyroid mesophase.
    Marriott M; Lupi L; Kumar A; Molinero V
    J Chem Phys; 2019 Apr; 150(16):164902. PubMed ID: 31042878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleus-size pinning for determination of nucleation free-energy barriers and nucleus geometry.
    Sharma AK; Escobedo FA
    J Chem Phys; 2018 May; 148(18):184104. PubMed ID: 29764145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vapor-liquid nucleation of argon: exploration of various intermolecular potentials.
    McGrath MJ; Ghogomu JN; Tsona NT; Siepmann JI; Chen B; Napari I; Vehkamäki H
    J Chem Phys; 2010 Aug; 133(8):084106. PubMed ID: 20815559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical calculation of free-energy barriers for entangled polymer nucleation.
    Tang X; Tian F; Xu T; Li L; Reinhardt A
    J Chem Phys; 2020 Jun; 152(22):224904. PubMed ID: 32534553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure control in interfacial systems: Atomistic simulations of vapor nucleation.
    Marchio S; Meloni S; Giacomello A; Valeriani C; Casciola CM
    J Chem Phys; 2018 Feb; 148(6):064706. PubMed ID: 29448782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vapor-liquid nucleation in two dimensions: on the intriguing sign switch of the errors of the classical nucleation theory.
    Loeffler TD; Henderson DE; Chen B
    J Chem Phys; 2012 Nov; 137(19):194304. PubMed ID: 23181303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleation rate analysis of methane hydrate from molecular dynamics simulations.
    Yuhara D; Barnes BC; Suh D; Knott BC; Beckham GT; Yasuoka K; Wu DT; Sum AK
    Faraday Discuss; 2015; 179():463-74. PubMed ID: 25876773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studying vapor-liquid transition using a generalized ensemble.
    Ballal D; Lu Q; Raju M; Song X
    J Chem Phys; 2019 Oct; 151(13):134108. PubMed ID: 31594333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bubble nucleation in simple and molecular liquids via the largest spherical cavity method.
    Gonzalez MA; Abascal JL; Valeriani C; Bresme F
    J Chem Phys; 2015 Apr; 142(15):154903. PubMed ID: 25903906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerating simulation of metastable decay.
    Kusaka I
    J Chem Phys; 2009 Jul; 131(3):034112. PubMed ID: 19624186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why Is Gyroid More Difficult to Nucleate from Disordered Liquids than Lamellar and Hexagonal Mesophases?
    Kumar A; Molinero V
    J Phys Chem B; 2018 May; 122(17):4758-4770. PubMed ID: 29620902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of nucleation using mean first-passage time data from molecular dynamics simulation.
    Nicholson DA; Rutledge GC
    J Chem Phys; 2016 Apr; 144(13):134105. PubMed ID: 27059560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulation study of droplet nucleation.
    Neimark AV; Vishnyakov A
    J Chem Phys; 2005 May; 122(17):174508. PubMed ID: 15910046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.