These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35065916)

  • 1. Inducer exclusion, by itself, cannot account for the glucose-mediated lac repression of Escherichia coli.
    Aggarwal RK; Narang A
    Biophys J; 2022 Mar; 121(5):820-829. PubMed ID: 35065916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical model of the lac operon: inducer exclusion, catabolite repression, and diauxic growth on glucose and lactose.
    Wong P; Gladney S; Keasling JD
    Biotechnol Prog; 1997; 13(2):132-43. PubMed ID: 9104037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bistability of the lac operon during growth of Escherichia coli on lactose and lactose+glucose.
    Narang A; Pilyugin SS
    Bull Math Biol; 2008 May; 70(4):1032-64. PubMed ID: 18246403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inducer exclusion by glucose 6-phosphate in Escherichia coli.
    Hogema BM; Arents JC; Bader R; Eijkemans K; Inada T; Aiba H; Postma PW
    Mol Microbiol; 1998 May; 28(4):755-65. PubMed ID: 9643543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Positive feedback exists and drives the glucose-mediated repression in Escherichia coli.
    Aggarwal RK; Narang A
    Biophys J; 2022 Mar; 121(5):808-819. PubMed ID: 35065914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphatidylethanolamine is required for in vivo function of the membrane-associated lactose permease of Escherichia coli.
    Bogdanov M; Dowhan W
    J Biol Chem; 1995 Jan; 270(2):732-9. PubMed ID: 7822303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on beta-galactoside transport in a Proteus mirabilis merodiploid carrying an Escherichia coli lactose operon.
    Stubbs J; Horwitz A; Moses V
    J Bacteriol; 1973 Oct; 116(1):131-40. PubMed ID: 4583204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effector Overlap between the
    Narang A; Oehler S
    J Bacteriol; 2017 May; 199(9):. PubMed ID: 28193904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of catabolite repression and inducer exclusion on the bistable behavior of the lac operon.
    Santillán M; Mackey MC
    Biophys J; 2004 Mar; 86(3):1282-92. PubMed ID: 14990461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autoregulation of lactose uptake through the LacY permease by enzyme IIAGlc of the PTS in Escherichia coli K-12.
    Hogema BM; Arents JC; Bader R; Postma PW
    Mol Microbiol; 1999 Mar; 31(6):1825-33. PubMed ID: 10209753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism responsible for glucose-lactose diauxie in Escherichia coli: challenge to the cAMP model.
    Inada T; Kimata K; Aiba H
    Genes Cells; 1996 Mar; 1(3):293-301. PubMed ID: 9133663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determinants of bistability in induction of the Escherichia coli lac operon.
    Dreisigmeyer DW; Stajic J; Nemenman I; Hlavacek WS; Wall ME
    IET Syst Biol; 2008 Sep; 2(5):293-303. PubMed ID: 19045824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mutant Ebg enzyme that converts lactose into an inducer of the lac operon.
    Rolseth SJ; Fried VA; Hall BG
    J Bacteriol; 1980 Jun; 142(3):1036-9. PubMed ID: 6769907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. lac operon induction in Escherichia coli: Systematic comparison of IPTG and TMG induction and influence of the transacetylase LacA.
    Marbach A; Bettenbrock K
    J Biotechnol; 2012 Jan; 157(1):82-8. PubMed ID: 22079752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polycistronic effects of catabolite repression on the lac operon.
    Silverstone AE; Magasanik B
    J Bacteriol; 1972 Dec; 112(3):1184-92. PubMed ID: 4118294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Permease-specific mutations in Salmonella typhimurium and Escherichia coli that release the glycerol, maltose, melibiose, and lactose transport systems from regulation by the phosphoenolpyruvate:sugar phosphotransferase system.
    Saier MH; Straud H; Massman LS; Judice JJ; Newman MJ; Feucht BU
    J Bacteriol; 1978 Mar; 133(3):1358-67. PubMed ID: 346569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico evolved lac operons exhibit bistability for artificial inducers, but not for lactose.
    van Hoek MJ; Hogeweg P
    Biophys J; 2006 Oct; 91(8):2833-43. PubMed ID: 16877514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of the lac regulatory genes in catabolite repression in Escherichia coli.
    Palmer J; Moses V
    Biochem J; 1967 May; 103(2):358-66. PubMed ID: 5340365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bistability and Nonmonotonic Induction of the lac Operon in the Natural Lactose Uptake System.
    Zander D; Samaga D; Straube R; Bettenbrock K
    Biophys J; 2017 May; 112(9):1984-1996. PubMed ID: 28494968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of the central loop of the lactose permease of Escherichia coli in its allosteric regulation by the glucose-specific enzyme IIA of the phosphoenolpyruvate-dependent phosphotransferase system.
    Hoischen C; Levin J; Pitaknarongphorn S; Reizer J; Saier MH
    J Bacteriol; 1996 Oct; 178(20):6082-6. PubMed ID: 8830713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.