These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 3506593)

  • 1. Energy cost of three-point crutch ambulation in fracture patients.
    Waters RL; Campbell J; Perry J
    J Orthop Trauma; 1987; 1(2):170-3. PubMed ID: 3506593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crutch length: effect on energy cost and activity intensity in non-weight-bearing ambulation.
    Mullis R; Dent RM
    Arch Phys Med Rehabil; 2000 May; 81(5):569-72. PubMed ID: 10807093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy expenditure during ambulation with ortho crutches and axillary crutches.
    Hinton CA; Cullen KE
    Phys Ther; 1982 Jun; 62(6):813-9. PubMed ID: 7079293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy cost of ambulation with crutches.
    Fisher SV; Patterson RP
    Arch Phys Med Rehabil; 1981 Jun; 62(6):250-6. PubMed ID: 7235917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy expenditure of ambulation using the Sure-Gait crutch and the standard axillary crutch.
    Annesley AL; Almada-Norfleet M; Arnall DA; Cornwall MW
    Phys Ther; 1990 Jan; 70(1):18-23. PubMed ID: 2294527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiovascular stress of crutch walking.
    Patterson R; Fisher SV
    Arch Phys Med Rehabil; 1981 Jun; 62(6):257-60. PubMed ID: 7235918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy costs of walking in lower-extremity plaster casts.
    Waters RL; Campbell J; Thomas L; Hugos L; Davis P
    J Bone Joint Surg Am; 1982 Jul; 64(6):896-9. PubMed ID: 7085717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic energy expenditure during spring-loaded crutch ambulation.
    Seeley MK; Sandberg RP; Chacon JF; Funk MD; Nokes N; Mack GW
    J Sport Rehabil; 2011 Nov; 20(4):419-27. PubMed ID: 22012496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy cost of walking of below-knee amputees having no vascular disease.
    Pagliarulo MA; Waters R; Hislop HJ
    Phys Ther; 1979 May; 59(5):538-43. PubMed ID: 441113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute physiologic and perceptual responses during three modes of ambulation: walking, axillary crutch walking, and running.
    Bhambani Y; Clarkson H
    Arch Phys Med Rehabil; 1989 Jun; 70(6):445-50. PubMed ID: 2730307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Some biomechanical aspects of crutch and cane walking: the relationship between forward rate of progression, symmetry, and efficiency--a case report.
    McDonough AL; Razza-Doherty M
    Clin Podiatr Med Surg; 1988 Jul; 5(3):677-93. PubMed ID: 3395953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The energy expenditure of non-weight bearing crutch walking on the level and ascending stairs.
    Moran J; Murphy A; Murphy D; Austin A; Moran D; Cronin C; Guinan E; Hussey J
    Gait Posture; 2015 Jun; 42(1):23-6. PubMed ID: 25891530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of energy consumption between the use of a walking frame, crutches and a Stride-on rehabilitation scooter.
    Patel N; Batten T; Roberton A; Enki D; Wansbrough G; Davis J
    Foot (Edinb); 2016 Aug; 28():7-11. PubMed ID: 27344234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of a hands-free crutch in patients with musculoskeletal injuries: randomized control trial.
    Rambani R; Shahid MS; Goyal S
    Int J Rehabil Res; 2007 Dec; 30(4):357-9. PubMed ID: 17975459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of assistive devices on the oxygen cost, cardiovascular stress, and perception of nonweight-bearing ambulation.
    Holder CG; Haskvitz EM; Weltman A
    J Orthop Sports Phys Ther; 1993 Oct; 18(4):537-42. PubMed ID: 8220412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validity and reproducibility of crutch force and heart rate measurements to assess energy expenditure of paraplegic gait.
    IJzerman MJ; Baardman G; van 't Hof MA; Boom HB; Hermens HJ; Veltink PH
    Arch Phys Med Rehabil; 1999 Sep; 80(9):1017-23. PubMed ID: 10489002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy cost, exercise intensity, and gait efficiency of standard versus rocker-bottom axillary crutch walking.
    Nielsen DH; Harris JM; Minton YM; Motley NS; Rowley JL; Wadsworth CT
    Phys Ther; 1990 Aug; 70(8):487-93. PubMed ID: 2374777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A kinematic comparison of spring-loaded and traditional crutches.
    Seeley MK; Hunter I; Bateman T; Roggia A; Larson BJ; Draper DO
    J Sport Rehabil; 2011 May; 20(2):198-206. PubMed ID: 21576711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic evaluation of the criteria used to fit elbow crutches by measurement of oxygen consumption.
    Smith TR; Enright S
    Arch Phys Med Rehabil; 1996 Jan; 77(1):70-4. PubMed ID: 8554478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Locomotor-respiratory coupling during axillary crutch ambulation.
    Hurst CA; Kirby RL; MacLeod DA
    Am J Phys Med Rehabil; 2001 Nov; 80(11):831-8; quiz 839-41. PubMed ID: 11805455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.