These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 35066259)

  • 41. Modeling the Kinetics of UV/Peracetic Acid Advanced Oxidation Process.
    Zhang T; Huang CH
    Environ Sci Technol; 2020 Jun; 54(12):7579-7590. PubMed ID: 32396722
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Degradation of carbamazepine by UV/chlorine advanced oxidation process and formation of disinfection by-products.
    Zhou S; Xia Y; Li T; Yao T; Shi Z; Zhu S; Gao N
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16448-55. PubMed ID: 27164884
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparative evaluation of 2-isopropyl-3-methoxypyrazine, 2-isobutyl-3-methoxypyrazine, and 2,4,6-trichloroanisole degradation by ultraviolet/chlorine and ultraviolet/hydrogen peroxide processes.
    Lee J; Nam SH; Koo JW; Kim E; Hwang TM
    Chemosphere; 2021 Sep; 279():130513. PubMed ID: 33866092
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Factors affecting the roles of reactive species in the degradation of micropollutants by the UV/chlorine process.
    Wu Z; Guo K; Fang J; Yang X; Xiao H; Hou S; Kong X; Shang C; Yang X; Meng F; Chen L
    Water Res; 2017 Dec; 126():351-360. PubMed ID: 28985600
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Degradation effect of ultraviolet-induced advanced oxidation of chlorine, chlorine dioxide, and hydrogen peroxide and its impact on coagulation of extracellular organic matter produced by Microcystis aeruginosa.
    Shahi NK; Maeng M; Choi I; Dockko S
    Chemosphere; 2021 Oct; 281():130765. PubMed ID: 34010716
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ultraviolet-Light-emitting-diode activated monochloramine for the degradation of carbamazepine: Kinetics, mechanisms, by-product formation, and toxicity.
    Wang X; Ao X; Zhang T; Li Z; Cai R; Chen Z; Wang Y; Sun W
    Sci Total Environ; 2022 Feb; 806(Pt 4):151372. PubMed ID: 34728210
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Degradation of metronidazole by UV/chlorine treatment: Efficiency, mechanism, pathways and DBPs formation.
    Pan Y; Li X; Fu K; Deng H; Shi J
    Chemosphere; 2019 Jun; 224():228-236. PubMed ID: 30822729
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The multiple roles of chlorite on the concentrations of radicals and ozone and formation of chlorate during UV photolysis of free chlorine.
    Zhao J; Shang C; Zhang X; Yang X; Yin R
    Water Res; 2021 Feb; 190():116680. PubMed ID: 33285457
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Treatment of PPCPs and disinfection by-product formation in drinking water through advanced oxidation processes: Comparison of UV, UV/Chlorine, and UV/H
    Pai CW; Wang GS
    Chemosphere; 2022 Jan; 287(Pt 3):132171. PubMed ID: 34537457
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Assessment of the UV/Cl
    Javier Benitez F; Real FJ; Acero JL; Casas F
    Environ Technol; 2017 Oct; 38(20):2508-2516. PubMed ID: 27927078
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Removal of micropollutants in drinking water using UV-LED/chlorine advanced oxidation process followed by activated carbon adsorption.
    Yin R; Shang C
    Water Res; 2020 Oct; 185():116297. PubMed ID: 32818735
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Potential of UV-B and UV-C irradiation in disinfecting microorganisms and removing N-nitrosodimethylamine and 1,4-dioxane for potable water reuse: A review.
    Minh Tran HD; Boivin S; Kodamatani H; Ikehata K; Fujioka T
    Chemosphere; 2022 Jan; 286(Pt 2):131682. PubMed ID: 34358895
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Investigation of the efficacy of the UV/Chlorine process for the removal of trimethoprim: Effects of operational parameters and artificial neural networks modelling.
    Teo YS; Jafari I; Liang F; Jung Y; Van der Hoek JP; Ong SL; Hu J
    Sci Total Environ; 2022 Mar; 812():152551. PubMed ID: 34952077
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The role of reactive chlorine and nitrogen species in micropollutant degradation in UV/monochloramine.
    Seah ZQ; Leow S; Snyder SA
    Chemosphere; 2024 Jan; 347():140542. PubMed ID: 37926167
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of the new Cl
    Sgroi M; Anumol T; Vagliasindi FGA; Snyder SA; Roccaro P
    Sci Total Environ; 2021 Apr; 765():142720. PubMed ID: 33572038
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The optimal dose of oxidants in UV-based advanced oxidation processes with respect to primary radical concentrations.
    Meng T; Sun W; Su X; Sun P
    Water Res; 2021 Nov; 206():117738. PubMed ID: 34649132
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparative evaluation of metoprolol degradation by UV/chlorine and UV/H
    Gao YQ; Zhang J; Li C; Tian FX; Gao NY
    Chemosphere; 2020 Mar; 243():125325. PubMed ID: 31733542
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of chloride on the 185 nm advanced oxidation process.
    Furatian L; Mohseni M
    Chemosphere; 2018 May; 199():263-268. PubMed ID: 29448193
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Advanced oxidation processes for phthalate esters removal in aqueous solution: a systematic review.
    Amiri H; Martinez SS; Shiri MA; Soori MM
    Rev Environ Health; 2023 Jun; 38(2):197-218. PubMed ID: 37261847
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Kinetics and model development of iohexol degradation during UV/H
    Hu CY; Hou YZ; Lin YL; Deng YG; Hua SJ; Du YF; Chen CW; Wu CH
    Chemosphere; 2019 Aug; 229():602-610. PubMed ID: 31100631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.