BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35066453)

  • 21. Application of Delphi-AHP methods to select the priorities of WEEE for recycling in a waste management decision-making tool.
    Kim M; Jang YC; Lee S
    J Environ Manage; 2013 Oct; 128():941-8. PubMed ID: 23892135
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An improved multi-variable grey model for forecasting China's finished products from comprehensive waste utilization.
    Gou X; Zeng B; Gong Y
    Environ Sci Pollut Res Int; 2021 Aug; 28(31):42901-42915. PubMed ID: 33826096
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessing the generation, recycling and disposal practices of electronic/electrical-waste (E-Waste) from major cities in Pakistan.
    Sajid M; Syed JH; Iqbal M; Abbas Z; Hussain I; Baig MA
    Waste Manag; 2019 Feb; 84():394-401. PubMed ID: 30470632
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Predicting the Recycling Potential and Evaluating the Environmental Benefits of Waste Electrical and Electronic Equipment in Beijing-Tianjin-Hebei].
    Chen P; Shi XQ
    Huan Jing Ke Xue; 2020 Apr; 41(4):1976-1986. PubMed ID: 32608707
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Waste management of printed wiring boards: a life cycle assessment of the metals recycling chain from liberation through refining.
    Xue M; Kendall A; Xu Z; Schoenung JM
    Environ Sci Technol; 2015 Jan; 49(2):940-7. PubMed ID: 25563893
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimating the amount of WEEE generated in South Korea by using the population balance model.
    Kim S; Oguchi M; Yoshida A; Terazono A
    Waste Manag; 2013 Feb; 33(2):474-83. PubMed ID: 22884581
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of critical factors in construction and demolition waste recycling by the grey-DEMATEL approach: a Chinese perspective.
    Liu H; Long H; Li X
    Environ Sci Pollut Res Int; 2020 Mar; 27(8):8507-8525. PubMed ID: 31907809
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Forecasting e-waste recovery scale driven by seasonal data characteristics: A decomposition-ensemble approach.
    Mohsin A; Hongzhen L; Masum Iqbal M; Salim ZR; Hossain A; Al Kafy A
    Waste Manag Res; 2022 Jul; 40(7):870-881. PubMed ID: 34823396
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessing young consumers' awareness and participation in sustainable e-waste management practices: a survey study in Northwest China.
    Ramzan S; Liu C; Munir H; Xu Y
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):20003-20013. PubMed ID: 31102225
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decadal Journey of E-Waste Recycling: What Has It Achieved?
    Sun B; Schnoor JL; Zeng EY
    Environ Sci Technol; 2022 Sep; 56(18):12785-12792. PubMed ID: 36067032
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Seasonal variations and source apportionment of complex polycyclic aromatic hydrocarbon mixtures in particulate matter in an electronic waste and urban area in South China.
    Chen SJ; Wang J; Wang T; Wang T; Mai BX; Simonich SLM
    Sci Total Environ; 2016 Dec; 573():115-122. PubMed ID: 27552735
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Construction of the Reverse Resource Recovery System of e-Waste Based on DLRNN.
    Li C
    Comput Intell Neurosci; 2021; 2021():2143235. PubMed ID: 34603427
    [TBL] [Abstract][Full Text] [Related]  

  • 33. E-waste management and sustainability: a case study in Brazil.
    Azevedo LP; da Silva Araújo FG; Lagarinhos CAF; Tenório JAS; Espinosa DCR
    Environ Sci Pollut Res Int; 2017 Nov; 24(32):25221-25232. PubMed ID: 28929286
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Life cycle assessment of electronic waste treatment.
    Hong J; Shi W; Wang Y; Chen W; Li X
    Waste Manag; 2015 Apr; 38():357-65. PubMed ID: 25623003
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How to motivate the producers' green innovation in WEEE recycling in China? - An analysis based on evolutionary game theory.
    Zhao X; Bai X
    Waste Manag; 2021 Mar; 122():26-35. PubMed ID: 33476959
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measuring treatment costs of typical waste electrical and electronic equipment: A pre-research for Chinese policy making.
    Li J; Dong Q; Liu L; Song Q
    Waste Manag; 2016 Nov; 57():36-45. PubMed ID: 26970844
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Behavioral Evolutionary Analysis between the Government and Uncertified Recycler in China's E-Waste Recycling Management.
    Wang Q; Kong L; Li J; Li B; Wang F
    Int J Environ Res Public Health; 2020 Oct; 17(19):. PubMed ID: 33023179
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimation of electronic waste using optimized multivariate grey models.
    Duman GM; Kongar E; Gupta SM
    Waste Manag; 2019 Jul; 95():241-249. PubMed ID: 31351609
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uncovering residents' behaviors, attitudes, and WTP for recycling e-waste: a case study of Zhuhai city, China.
    Cai K; Song Q; Peng S; Yuan W; Liang Y; Li J
    Environ Sci Pollut Res Int; 2020 Jan; 27(2):2386-2399. PubMed ID: 31782095
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimating future generation of obsolete household appliances in China.
    Zhang L; Yuan Z; Bi J; Huang L
    Waste Manag Res; 2012 Nov; 30(11):1160-8. PubMed ID: 22517530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.